document.write( "Question 26344: If y = 9, find the integral values of x and z that satisfy all of the following equations:
\n" );
document.write( "z^x = y^2x
\n" );
document.write( "2^z = (2)(4^x)
\n" );
document.write( "x+y+z = 16\r
\n" );
document.write( "\n" );
document.write( "I'd really appreciate the help! Thanks in advance. \n" );
document.write( "
Algebra.Com's Answer #14193 by longjonsilver(2297)![]() ![]() You can put this solution on YOUR website! ignoring \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We can take logs to the base2 with \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now log2 to base2 is 1, so we get\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "--> 2x - z = -1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x+y+z = 16 \n" ); document.write( "x+9+z = 16 \n" ); document.write( "--> x + z = 7\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Add these 2 equations together and we get 3x = 6. Therefore x = 2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence, from x+z = 7, we then know that z = 5.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, we have x=2, z=5. Check these values in both of the original equations 2 and 3.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now check in equation 1... \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "jon. \n" ); document.write( " \n" ); document.write( " |