document.write( "Question 187638This question is from textbook mathematial analysis
\n" );
document.write( ": If p represents price per unit in dollars and q represents the number of units per unit of time, find the equilibrium point.\r
\n" );
document.write( "\n" );
document.write( "Supply: p= (q+10)^2 , Demand: p=388-16q-q^2\r
\n" );
document.write( "\n" );
document.write( "With details
\n" );
document.write( "Thank you, \n" );
document.write( "
Algebra.Com's Answer #140668 by nerdybill(7384)![]() ![]() You can put this solution on YOUR website! The equilibrium point is when supply and demand are equal. \n" ); document.write( ". \n" ); document.write( "Supply: p= (q+10)^2 , Demand: p=388-16q-q^2 \n" ); document.write( ". \n" ); document.write( "Notice BOTH equation defines 'p'. Set them equal to each other then solve for 'q': \n" ); document.write( "(q+10)^2 = 388-16q-q^2 \n" ); document.write( "Expanding the left side with FOIL: \n" ); document.write( "(q+10)^2 = 388-16q-q^2 \n" ); document.write( "(q+10)(q+10) = 388-16q-q^2 \n" ); document.write( "q^2 + 20q + 100 = 388-16q-q^2 \n" ); document.write( "Move all terms to the left: \n" ); document.write( "2q^2 + 20q + 100 = 388-16q \n" ); document.write( "2q^2 + 36q + 100 = 388 \n" ); document.write( "2q^2 + 36q - 288 = 0 \n" ); document.write( "Divide both sides by 2: \n" ); document.write( "q^2 + 18q - 144 = 0 \n" ); document.write( "Factoring the left: \n" ); document.write( "(q+24)(q-6) = 0 \n" ); document.write( ". \n" ); document.write( "q = {-24, 6} \n" ); document.write( "A negative solution does not make sense so: \n" ); document.write( "q = 6\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |