document.write( "Question 187638This question is from textbook mathematial analysis
\n" ); document.write( ": If p represents price per unit in dollars and q represents the number of units per unit of time, find the equilibrium point.\r
\n" ); document.write( "\n" ); document.write( "Supply: p= (q+10)^2 , Demand: p=388-16q-q^2\r
\n" ); document.write( "\n" ); document.write( "With details
\n" ); document.write( "Thank you,
\n" ); document.write( "

Algebra.Com's Answer #140668 by nerdybill(7384)\"\" \"About 
You can put this solution on YOUR website!
The equilibrium point is when supply and demand are equal.
\n" ); document.write( ".
\n" ); document.write( "Supply: p= (q+10)^2 , Demand: p=388-16q-q^2
\n" ); document.write( ".
\n" ); document.write( "Notice BOTH equation defines 'p'. Set them equal to each other then solve for 'q':
\n" ); document.write( "(q+10)^2 = 388-16q-q^2
\n" ); document.write( "Expanding the left side with FOIL:
\n" ); document.write( "(q+10)^2 = 388-16q-q^2
\n" ); document.write( "(q+10)(q+10) = 388-16q-q^2
\n" ); document.write( "q^2 + 20q + 100 = 388-16q-q^2
\n" ); document.write( "Move all terms to the left:
\n" ); document.write( "2q^2 + 20q + 100 = 388-16q
\n" ); document.write( "2q^2 + 36q + 100 = 388
\n" ); document.write( "2q^2 + 36q - 288 = 0
\n" ); document.write( "Divide both sides by 2:
\n" ); document.write( "q^2 + 18q - 144 = 0
\n" ); document.write( "Factoring the left:
\n" ); document.write( "(q+24)(q-6) = 0
\n" ); document.write( ".
\n" ); document.write( "q = {-24, 6}
\n" ); document.write( "A negative solution does not make sense so:
\n" ); document.write( "q = 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );