document.write( "Question 187009: please factor and solve
\n" ); document.write( "
\n" ); document.write( "12z^2+z=6
\n" ); document.write( "

Algebra.Com's Answer #140170 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\"12z%5E2%2Bz=6\" Start with the given equation.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"12z%5E2%2Bz-6=0\" Subtract 6 from both sides.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's factor the left side:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"12z%5E2%2Bz-6\", we can see that the first coefficient is \"12\", the second coefficient is \"1\", and the last term is \"-6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"12\" by the last term \"-6\" to get \"%2812%29%28-6%29=-72\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-72\" (the previous product) and add to the second coefficient \"1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-72\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-72\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,9,12,18,24,36,72\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36,-72\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-72\".\r
\n" ); document.write( "\n" ); document.write( "1*(-72)
\n" ); document.write( "2*(-36)
\n" ); document.write( "3*(-24)
\n" ); document.write( "4*(-18)
\n" ); document.write( "6*(-12)
\n" ); document.write( "8*(-9)
\n" ); document.write( "(-1)*(72)
\n" ); document.write( "(-2)*(36)
\n" ); document.write( "(-3)*(24)
\n" ); document.write( "(-4)*(18)
\n" ); document.write( "(-6)*(12)
\n" ); document.write( "(-8)*(9)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-721+(-72)=-71
2-362+(-36)=-34
3-243+(-24)=-21
4-184+(-18)=-14
6-126+(-12)=-6
8-98+(-9)=-1
-172-1+72=71
-236-2+36=34
-324-3+24=21
-418-4+18=14
-612-6+12=6
-89-8+9=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-8\" and \"9\" add to \"1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-8\" and \"9\" both multiply to \"-72\" and add to \"1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"1z\" with \"-8z%2B9z\". Remember, \"-8\" and \"9\" add to \"1\". So this shows us that \"-8z%2B9z=1z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"12z%5E2%2Bhighlight%28-8z%2B9z%29-6\" Replace the second term \"1z\" with \"-8z%2B9z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2812z%5E2-8z%29%2B%289z-6%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4z%283z-2%29%2B%289z-6%29\" Factor out the GCF \"4z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4z%283z-2%29%2B3%283z-2%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284z%2B3%29%283z-2%29\" Combine like terms. Or factor out the common term \"3z-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"12z%5E2%2Bz-6\" factors to \"%284z%2B3%29%283z-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"12z%5E2%2Bz-6=0\" becomes \"%284z%2B3%29%283z-2%29=0\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now set each factor equal to zero:\r
\n" ); document.write( "\n" ); document.write( "\"4z%2B3=0\" or \"3z-2=0\" \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z=-3%2F4\" or \"z=2%2F3\" Now solve for z in each case\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our answers are \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \"z=-3%2F4\" or \"z=2%2F3\"
\n" ); document.write( "
\n" );