document.write( "Question 185528: please help with this polynomial
\n" ); document.write( "
\n" ); document.write( "10x^2+23x+12
\n" ); document.write( "
\n" ); document.write( "thanks
\n" ); document.write( "

Algebra.Com's Answer #139180 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I assume that you want to factor.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"10x%5E2%2B23x%2B12\", we can see that the first coefficient is \"10\", the second coefficient is \"23\", and the last term is \"12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"10\" by the last term \"12\" to get \"%2810%29%2812%29=120\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"120\" (the previous product) and add to the second coefficient \"23\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"120\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"120\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"120\".\r
\n" ); document.write( "\n" ); document.write( "1*120
\n" ); document.write( "2*60
\n" ); document.write( "3*40
\n" ); document.write( "4*30
\n" ); document.write( "5*24
\n" ); document.write( "6*20
\n" ); document.write( "8*15
\n" ); document.write( "10*12
\n" ); document.write( "(-1)*(-120)
\n" ); document.write( "(-2)*(-60)
\n" ); document.write( "(-3)*(-40)
\n" ); document.write( "(-4)*(-30)
\n" ); document.write( "(-5)*(-24)
\n" ); document.write( "(-6)*(-20)
\n" ); document.write( "(-8)*(-15)
\n" ); document.write( "(-10)*(-12)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"23\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11201+120=121
2602+60=62
3403+40=43
4304+30=34
5245+24=29
6206+20=26
8158+15=23
101210+12=22
-1-120-1+(-120)=-121
-2-60-2+(-60)=-62
-3-40-3+(-40)=-43
-4-30-4+(-30)=-34
-5-24-5+(-24)=-29
-6-20-6+(-20)=-26
-8-15-8+(-15)=-23
-10-12-10+(-12)=-22
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"8\" and \"15\" add to \"23\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"8\" and \"15\" both multiply to \"120\" and add to \"23\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"23x\" with \"8x%2B15x\". Remember, \"8\" and \"15\" add to \"23\". So this shows us that \"8x%2B15x=23x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"10x%5E2%2Bhighlight%288x%2B15x%29%2B12\" Replace the second term \"23x\" with \"8x%2B15x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2810x%5E2%2B8x%29%2B%2815x%2B12%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%285x%2B4%29%2B%2815x%2B12%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%285x%2B4%29%2B3%285x%2B4%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%2B3%29%285x%2B4%29\" Combine like terms. Or factor out the common term \"5x%2B4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"10x%5E2%2B23x%2B12\" factors to \"%282x%2B3%29%285x%2B4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%282x%2B3%29%285x%2B4%29\" to get \"10x%5E2%2B23x%2B12\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );