document.write( "Question 183949: find the dimensions of a rectangle \"a\" with the greatest area whose perimetter is 30 feet \n" ); document.write( "
Algebra.Com's Answer #138015 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! find the dimensions of a rectangle \"a\" with the greatest area whose perimetter is 30 feet \n" ); document.write( "--------------------- \n" ); document.write( "Perimeter = 2(L + W) \n" ); document.write( "30 + 2(L+W) \n" ); document.write( "L+W = 15 \n" ); document.write( "W = 15-L \n" ); document.write( "---------------- \n" ); document.write( "Area = LW \n" ); document.write( "Substitute to get: \n" ); document.write( "Area = L(15-L) \n" ); document.write( "Area = -L^2 + 15L \n" ); document.write( "That is a quadratic with a = -1,b = 15 \n" ); document.write( "-------------------- \n" ); document.write( "Maximum area occurs when L = -b/2a = -15/(-2) = 15/2 \n" ); document.write( "--------------- \n" ); document.write( "Solve for W when L = (15/2) \n" ); document.write( "W = 15 - (15/2) = 15/2 \n" ); document.write( "-------------------------------- \n" ); document.write( "The Width and the Length are both 15/2 ft. \n" ); document.write( "================================================ \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |