document.write( "Question 183160This question is from textbook
\n" ); document.write( ": 6g^3-24g^2+24g \n" ); document.write( "
Algebra.Com's Answer #137533 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I assume that you want to factor right? Please post full instructions.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6g%5E3-24g%5E2%2B24g\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6g%28g%5E2-4g%2B4%29\" Factor out the GCF \"6g\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"g%5E2-4g%2B4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"1g%5E2-4g%2B4\" we can see that the first term is \"1g%5E2\" and the last term is \"4\" where the coefficients are 1 and 4 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 1 and the last coefficient 4 to get 4. Now what two numbers multiply to 4 and add to the middle coefficient -4? Let's list all of the factors of 4:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of 4:\r
\n" ); document.write( "\n" ); document.write( "1,2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to 4\r
\n" ); document.write( "\n" ); document.write( "1*4\r
\n" ); document.write( "\n" ); document.write( "2*2\r
\n" ); document.write( "\n" ); document.write( "(-1)*(-4)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(-2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember two negative numbers multiplied together make a positive number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to -4? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to -4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
141+4=5
222+2=4
-1-4-1+(-4)=-5
-2-2-2+(-2)=-4
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -2 and -2 add up to -4 and multiply to 4\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"1g%5E2-4g%2B4\", replace \"-4g\" with \"-2g%2B-2g\" (notice \"-2g%2B-2g\" adds up to \"-4g\". So it is equivalent to \"-4g\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"1g%5E2%2Bhighlight%28-2g%2B-2g%29%2B4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"1g%5E2-2g-2g%2B4\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%281g%5E2-2g%29%2B%28-2g%2B4%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"g%28g-2%29-2%28g-2%29\" Factor out the GCF of \"g\" out of the first group. Factor out the GCF of \"-2\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28g-2%29%28g-2%29\" Since we have a common term of \"g-2\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"1g%5E2-2g-2g%2B4\" factors to \"%28g-2%29%28g-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"1g%5E2-4g%2B4\" factors to \"%28g-2%29%28g-2%29\" (since \"1g%5E2-4g%2B4\" is equivalent to \"1g%5E2-2g-2g%2B4\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: \"%28g-2%29%28g-2%29\" is equivalent to \"%28g-2%29%5E2\" since the term \"g-2\" occurs twice. So \"1g%5E2-4g%2B4\" also factors to \"%28g-2%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our expression goes from \"6g%28g%5E2-4g%2B4%29\" and factors further to \"6g%28g-2%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6g%5E3-24g%5E2%2B24g\" factors to \"6g%28g-2%29%5E2\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );