document.write( "Question 182956: C6x²+7x-20 \n" ); document.write( "
Algebra.Com's Answer #137353 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"6x%5E2%2B7x-20\", we can see that the first coefficient is \"6\", the second coefficient is \"7\", and the last term is \"-20\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"6\" by the last term \"-20\" to get \"%286%29%28-20%29=-120\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-120\" (the previous product) and add to the second coefficient \"7\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-120\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-120\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-120\".\r
\n" ); document.write( "\n" ); document.write( "1*(-120)
\n" ); document.write( "2*(-60)
\n" ); document.write( "3*(-40)
\n" ); document.write( "4*(-30)
\n" ); document.write( "5*(-24)
\n" ); document.write( "6*(-20)
\n" ); document.write( "8*(-15)
\n" ); document.write( "10*(-12)
\n" ); document.write( "(-1)*(120)
\n" ); document.write( "(-2)*(60)
\n" ); document.write( "(-3)*(40)
\n" ); document.write( "(-4)*(30)
\n" ); document.write( "(-5)*(24)
\n" ); document.write( "(-6)*(20)
\n" ); document.write( "(-8)*(15)
\n" ); document.write( "(-10)*(12)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"7\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-1201+(-120)=-119
2-602+(-60)=-58
3-403+(-40)=-37
4-304+(-30)=-26
5-245+(-24)=-19
6-206+(-20)=-14
8-158+(-15)=-7
10-1210+(-12)=-2
-1120-1+120=119
-260-2+60=58
-340-3+40=37
-430-4+30=26
-524-5+24=19
-620-6+20=14
-815-8+15=7
-1012-10+12=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-8\" and \"15\" add to \"7\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-8\" and \"15\" both multiply to \"-120\" and add to \"7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"7x\" with \"-8x%2B15x\". Remember, \"-8\" and \"15\" add to \"7\". So this shows us that \"-8x%2B15x=7x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6x%5E2%2Bhighlight%28-8x%2B15x%29-20\" Replace the second term \"7x\" with \"-8x%2B15x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286x%5E2-8x%29%2B%2815x-20%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%283x-4%29%2B%2815x-20%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%283x-4%29%2B5%283x-4%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%2B5%29%283x-4%29\" Combine like terms. Or factor out the common term \"3x-4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6x%5E2%2B7x-20\" factors to \"%282x%2B5%29%283x-4%29\".\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );