document.write( "Question 182624: The Schwarzschild radius describes the critical value to which the radius of a massive body must be reduced for it to become a black hole. \r
\n" );
document.write( "\n" );
document.write( "R = 2 G M / c^2 \r
\n" );
document.write( "\n" );
document.write( "where \r
\n" );
document.write( "\n" );
document.write( "G = gravitational constant 6.7x10^-11 \r
\n" );
document.write( "\n" );
document.write( "M= mass of the object \r
\n" );
document.write( "\n" );
document.write( "C = speed of light 3x10^8 \r
\n" );
document.write( "\n" );
document.write( "The sun has M = 2x10^30 . What is the Schwarzschild radius for the sun? [Note its true radius is 700,000.]
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #137099 by solver91311(24713)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( "\n" ); document.write( "Just plug in the values for G, M, and c and do the arithmetic. Remember your rules for exponents:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hint: Gather all the significant figure numbers and do that arithmetic and then use the exponent rules to determine the appropriate power of 10 to apply to that answer.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "John \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |