document.write( "Question 182580: A cabin cruiser travels 20 miles in the same time that a power boat travels 40 miles. The cruiser travels 5 mph slower than the power boat. Find the speed of each boat. \n" ); document.write( "
Algebra.Com's Answer #137072 by josmiceli(19441)\"\" \"About 
You can put this solution on YOUR website!
For both boats, the time travelling is the same
\n" ); document.write( "For cabin cruiser:
\n" ); document.write( "(1) \"d%5B1%5D+=+r%5B1%5D%2At\"
\n" ); document.write( "For power boat:
\n" ); document.write( "(2) \"d%5B2%5D+=+r%5B2%5D%2At\"
\n" ); document.write( "given:
\n" ); document.write( "\"d%5B1%5D+=+20\"
\n" ); document.write( "\"d%5B2%5D+=+40\"
\n" ); document.write( "\"r%5B1%5D+=+r%5B2%5D+-+5\"
\n" ); document.write( "Rewriting (1) and (2):
\n" ); document.write( "(1) \"20+=+%28r%5B2%5D+-+5%29%2At\"
\n" ); document.write( "(2) \"40+=+r%5B2%5D%2At\"
\n" ); document.write( "This is 2 equations and 2 unknowns, so it's solvable
\n" ); document.write( "(1) \"20+=+r%5B2%5D%2At+-+5t\"
\n" ); document.write( "(2) \"40+=+r%5B2%5D%2At\"
\n" ); document.write( "Subtract (1) from (2)
\n" ); document.write( "(2) \"40+=+r%5B2%5D%2At\"
\n" ); document.write( "(1) \"-20+=+-r%5B2%5D%2At+%2B+5t\"
\n" ); document.write( "\"20+=+5t\"
\n" ); document.write( "\"t+=+4\" hrs
\n" ); document.write( "------------------
\n" ); document.write( "(1) \"20+=+r%5B1%5D%2At\"
\n" ); document.write( "(1) \"20+=+r%5B1%5D%2A4\"
\n" ); document.write( "\"r%5B1%5D+=+5\" mi/hr
\n" ); document.write( "--------------------
\n" ); document.write( "(2) \"40+=+r%5B2%5D%2At\"
\n" ); document.write( "(2) \"40+=+r%5B2%5D%2A4\"
\n" ); document.write( "\"r%5B2%5D+=+10\" mi/hr
\n" ); document.write( "--------------------
\n" ); document.write( "The cabin cruiser goes 5 mi/hr and
\n" ); document.write( "the power boat goes 10 mi/hr
\n" ); document.write( "
\n" );