document.write( "Question 181957: 46. Factor completely. -3t^3+ 3t^2-6t\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "60. Factor polynomial completely. 10a^2+ab-2b^2\r
\n" ); document.write( "\n" ); document.write( "80. Factor completely. 4m^2+20m+25\r
\n" ); document.write( "\n" ); document.write( "90. Factor each polynomial completely, given that the binomial Following it is a factor of the polynomial. x^3-4x^2-3x-10, x-5\r
\n" ); document.write( "\n" ); document.write( "102. Solve each equation. t2+1=13/6t
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #136578 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'll do the first three to get you started:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 46\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-3t%5E3%2B3t%5E2-6t\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-3t%28t%5E2-t%2B2%29\" Factor out the GCF \"-3t\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-3t%5E3%2B3t%5E2-6t\" factors to \"-3t%28t%5E2-t%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 60\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"10a%5E2%2Bab-2b%5E2\" we can see that the first term is \"10a%5E2\" and the last term is \"-2b%5E2\" where the coefficients are 10 and -2 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 10 and the last coefficient -2 to get -20. Now what two numbers multiply to -20 and add to the middle coefficient 1? Let's list all of the factors of -20:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -20:\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,10,20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-10,-20 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -20\r
\n" ); document.write( "\n" ); document.write( "(1)*(-20)\r
\n" ); document.write( "\n" ); document.write( "(2)*(-10)\r
\n" ); document.write( "\n" ); document.write( "(4)*(-5)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(20)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(10)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(5)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 1? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-201+(-20)=-19
2-102+(-10)=-8
4-54+(-5)=-1
-120-1+20=19
-210-2+10=8
-45-4+5=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -4 and 5 add up to 1 and multiply to -20\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"10a%5E2%2Bab-2b%5E2\", replace \"ab\" with \"-4ab%2B5ab\" (notice \"-4ab%2B5ab\" adds up to \"ab\". So it is equivalent to \"ab\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"10a%5E2%2Bhighlight%28-4ab%2B5ab%29%2B-2b%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"10a%5E2-4ab%2B5ab-2b%5E2\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2810a%5E2-4ab%29%2B%285ab-2b%5E2%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2a%285a-2b%29%2Bb%285a-2b%29\" Factor out the GCF of \"2a\" out of the first group. Factor out the GCF of \"b\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282a%2Bb%29%285a-2b%29\" Since we have a common term of \"5a-2b\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"10a%5E2-4ab%2B5ab-2b%5E2\" factors to \"%282a%2Bb%29%285a-2b%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"10a%5E2%2Bab-2b%5E2\" factors to \"%282a%2Bb%29%285a-2b%29\" (since \"10a%5E2%2Bab-2b%5E2\" is equivalent to \"10a%5E2-4ab%2B5ab-2b%5E2\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Answer:\r
\n" ); document.write( "\n" ); document.write( "So \"10a%5E2%2Bab-2b%5E2\" factors to \"%282a%2Bb%29%285a-2b%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 80\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"4m%5E2%2B20m%2B25\" we can see that the first term is \"4m%5E2\" and the last term is \"25\" where the coefficients are 4 and 25 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 4 and the last coefficient 25 to get 100. Now what two numbers multiply to 100 and add to the middle coefficient 20? Let's list all of the factors of 100:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of 100:\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,10,20,25,50\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-10,-20,-25,-50 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to 100\r
\n" ); document.write( "\n" ); document.write( "1*100\r
\n" ); document.write( "\n" ); document.write( "2*50\r
\n" ); document.write( "\n" ); document.write( "4*25\r
\n" ); document.write( "\n" ); document.write( "5*20\r
\n" ); document.write( "\n" ); document.write( "10*10\r
\n" ); document.write( "\n" ); document.write( "(-1)*(-100)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(-50)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(-25)\r
\n" ); document.write( "\n" ); document.write( "(-5)*(-20)\r
\n" ); document.write( "\n" ); document.write( "(-10)*(-10)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember two negative numbers multiplied together make a positive number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 20? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11001+100=101
2502+50=52
4254+25=29
5205+20=25
101010+10=20
-1-100-1+(-100)=-101
-2-50-2+(-50)=-52
-4-25-4+(-25)=-29
-5-20-5+(-20)=-25
-10-10-10+(-10)=-20
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that 10 and 10 add up to 20 and multiply to 100\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"4m%5E2%2B20m%2B25\", replace \"20m\" with \"10m%2B10m\" (notice \"10m%2B10m\" adds up to \"20m\". So it is equivalent to \"20m\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4m%5E2%2Bhighlight%2810m%2B10m%29%2B25\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"4m%5E2%2B10m%2B10m%2B25\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284m%5E2%2B10m%29%2B%2810m%2B25%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2m%282m%2B5%29%2B5%282m%2B5%29\" Factor out the GCF of \"2m\" out of the first group. Factor out the GCF of \"5\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282m%2B5%29%282m%2B5%29\" Since we have a common term of \"2m%2B5\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4m%5E2%2B10m%2B10m%2B25\" factors to \"%282m%2B5%29%282m%2B5%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"4m%5E2%2B20m%2B25\" factors to \"%282m%2B5%29%282m%2B5%29\" (since \"4m%5E2%2B20m%2B25\" is equivalent to \"4m%5E2%2B10m%2B10m%2B25\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: \"%282m%2B5%29%282m%2B5%29\" is equivalent to \"%282m%2B5%29%5E2\" since the term \"2m%2B5\" occurs twice. So \"4m%5E2%2B20m%2B25\" also factors to \"%282m%2B5%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Answer:\r
\n" ); document.write( "\n" ); document.write( "So \"4m%5E2%2B20m%2B25\" factors to \"%282m%2B5%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );