document.write( "Question 181934: These need to be factored completely\r
\n" ); document.write( "\n" ); document.write( "30z^8 + 44z^5 +16z^2 Could it be 2z^2(3z^ + 2)(5z^3 +4)\r
\n" ); document.write( "\n" ); document.write( "24x² + 14xy +2y² \r
\n" ); document.write( "\n" ); document.write( "(m+n)(x+3) + (m+n)(5+5) Could it be (m+n+3)(x+y+5)\r
\n" ); document.write( "\n" ); document.write( "Solve using the principal of zero products\r
\n" ); document.write( "\n" ); document.write( "(x+ 1/7)(x-4/5) = 0\r
\n" ); document.write( "\n" ); document.write( "Find the x-intercepts for the graph of the equation\r
\n" ); document.write( "\n" ); document.write( "Y = x² + 4x -45 Could it be (-9,0,(5,0)\r
\n" ); document.write( "\n" ); document.write( "Factor by grouping
\n" ); document.write( "-36x² -30x + 36 Could it be -6(3x-2)(2x+3)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #136554 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'll do the first two, which will hopefully help you with the rest of the problems. If not, then repost.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"30z%5E8%2B44z%5E5%2B16z%5E2\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2z%5E2%2815z%5E6%2B22z%5E3%2B8%29\" Factor out the GCF \"2z%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"15z%5E6%2B22z%5E3%2B8\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"15z%5E6%2B22z%5E3%2B8\" we can see that the first term is \"15z%5E6\" and the last term is \"8\" where the coefficients are 15 and 8 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 15 and the last coefficient 8 to get 120. Now what two numbers multiply to 120 and add to the middle coefficient 22? Let's list all of the factors of 120:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of 120:\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to 120\r
\n" ); document.write( "\n" ); document.write( "1*120\r
\n" ); document.write( "\n" ); document.write( "2*60\r
\n" ); document.write( "\n" ); document.write( "3*40\r
\n" ); document.write( "\n" ); document.write( "4*30\r
\n" ); document.write( "\n" ); document.write( "5*24\r
\n" ); document.write( "\n" ); document.write( "6*20\r
\n" ); document.write( "\n" ); document.write( "8*15\r
\n" ); document.write( "\n" ); document.write( "10*12\r
\n" ); document.write( "\n" ); document.write( "(-1)*(-120)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(-60)\r
\n" ); document.write( "\n" ); document.write( "(-3)*(-40)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(-30)\r
\n" ); document.write( "\n" ); document.write( "(-5)*(-24)\r
\n" ); document.write( "\n" ); document.write( "(-6)*(-20)\r
\n" ); document.write( "\n" ); document.write( "(-8)*(-15)\r
\n" ); document.write( "\n" ); document.write( "(-10)*(-12)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember two negative numbers multiplied together make a positive number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 22? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 22\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11201+120=121
2602+60=62
3403+40=43
4304+30=34
5245+24=29
6206+20=26
8158+15=23
101210+12=22
-1-120-1+(-120)=-121
-2-60-2+(-60)=-62
-3-40-3+(-40)=-43
-4-30-4+(-30)=-34
-5-24-5+(-24)=-29
-6-20-6+(-20)=-26
-8-15-8+(-15)=-23
-10-12-10+(-12)=-22
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that 10 and 12 add up to 22 and multiply to 120\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"15z%5E6%2B22z%5E3%2B8\", replace \"22z%5E3\" with \"10z%5E3%2B12z%5E3\" (notice \"10z%5E3%2B12z%5E3\" adds up to \"22z%5E3\". So it is equivalent to \"22z%5E3\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"15z%5E6%2Bhighlight%2810z%5E3%2B12z%5E3%29%2B8\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"15z%5E6%2B10z%5E3%2B12z%5E3%2B8\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2815z%5E6%2B10z%5E3%29%2B%2812z%5E3%2B8%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5z%5E3%283z%5E3%2B2%29%2B4%283z%5E3%2B2%29\" Factor out the GCF of \"5z%5E3\" out of the first group. Factor out the GCF of \"4\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285z%5E3%2B4%29%283z%5E3%2B2%29\" Since we have a common term of \"3z%5E3%2B2\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"15z%5E6%2B10z%5E3%2B12z%5E3%2B8\" factors to \"%285z%5E3%2B4%29%283z%5E3%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"15z%5E6%2B22z%5E3%2B8\" factors to \"%285z%5E3%2B4%29%283z%5E3%2B2%29\" (since \"15z%5E6%2B22z%5E3%2B8\" is equivalent to \"15z%5E6%2B10z%5E3%2B12z%5E3%2B8\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our expression goes from \"2z%5E2%2815z%5E6%2B22z%5E3%2B8%29\" and factors further to \"2z%5E2%285z%5E3%2B4%29%283z%5E3%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"30z%5E8%2B44z%5E5%2B16z%5E2\" completely factors to \"2z%5E2%285z%5E3%2B4%29%283z%5E3%2B2%29\"\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"24x%5E2%2B14xy%2B2y%5E2\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%2812x%5E2%2B7xy%2By%5E2%29\" Factor out the GCF \"2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"12x%5E2%2B7xy%2By%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"12x%5E2%2B7xy%2By%5E2\" we can see that the first term is \"12x%5E2\" and the last term is \"y%5E2\" where the coefficients are 12 and 1 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 12 and the last coefficient 1 to get 12. Now what two numbers multiply to 12 and add to the middle coefficient 7? Let's list all of the factors of 12:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of 12:\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-12 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to 12\r
\n" ); document.write( "\n" ); document.write( "1*12\r
\n" ); document.write( "\n" ); document.write( "2*6\r
\n" ); document.write( "\n" ); document.write( "3*4\r
\n" ); document.write( "\n" ); document.write( "(-1)*(-12)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(-6)\r
\n" ); document.write( "\n" ); document.write( "(-3)*(-4)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember two negative numbers multiplied together make a positive number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 7? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 7\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1121+12=13
262+6=8
343+4=7
-1-12-1+(-12)=-13
-2-6-2+(-6)=-8
-3-4-3+(-4)=-7
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that 3 and 4 add up to 7 and multiply to 12\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"12x%5E2%2B7xy%2By%5E2\", replace \"7xy\" with \"3xy%2B4xy\" (notice \"3xy%2B4xy\" adds up to \"7xy\". So it is equivalent to \"7xy\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"12x%5E2%2Bhighlight%283xy%2B4xy%29%2By%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"12x%5E2%2B3xy%2B4xy%2By%5E2\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2812x%5E2%2B3xy%29%2B%284xy%2By%5E2%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%284x%2By%29%2By%284x%2By%29\" Factor out the GCF of \"3x\" out of the first group. Factor out the GCF of \"y\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%2By%29%284x%2By%29\" Since we have a common term of \"4x%2By\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"12x%5E2%2B3xy%2B4xy%2By%5E2\" factors to \"%283x%2By%29%284x%2By%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"12x%5E2%2B7xy%2By%5E2\" factors to \"%283x%2By%29%284x%2By%29\" (since \"12x%5E2%2B7xy%2By%5E2\" is equivalent to \"12x%5E2%2B3xy%2B4xy%2By%5E2\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our expression goes from \"2%2812x%5E2%2B7xy%2By%5E2%29\" and factors further to \"2%283x%2By%29%284x%2By%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"24x%5E2%2B14xy%2B2y%5E2\" completely factors to \"2%283x%2By%29%284x%2By%29\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );