document.write( "Question 180851: find the value of k so that 9x^3-2x^2+kx+6/(x+2) has a remainder of 8. \n" ); document.write( "
Algebra.Com's Answer #135636 by ptaylor(2198)\"\" \"About 
You can put this solution on YOUR website!
PERFORM ROUTINE LONG DIVISION AND YOU WILL END UP WITH A REMAINDER OF -74-2K AND THAT MUST EQUAL 8
\n" ); document.write( "Divide (x+2) into (9x^3-2x^2+kx+6)
\n" ); document.write( "First iteration, we get 9x^2
\n" ); document.write( "(9x^3-2x^2+kx+6)-(9x^3+18x^2)=-20x^2+kx+6
\n" ); document.write( "Divide (x+2) into (-20x^2+kx+6)
\n" ); document.write( "Second iteration, we get -20x
\n" ); document.write( "(-20x^2+kx+6)-(-20x^2-40x)=x(40+k)+6
\n" ); document.write( "Divide (x+2) into x(40+k)+6
\n" ); document.write( "Third iteration, we get x(40+k)+80+2k
\n" ); document.write( "(x(40+k))+6)-(x(40+k))+80+2k)=-74-2k --AND THIS IS THE REMAINDER\r
\n" ); document.write( "\n" ); document.write( "Now we are told that:
\n" ); document.write( "-74-2k=8 add 72 to each side
\n" ); document.write( "-2k=74+8=82
\n" ); document.write( "k=-41\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hope this helps---ptaylor\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );