document.write( "Question 180862: With a 12 gallon tank, a Jupiter gets 22 mi/gal. Engineers estimate that every 2 gallon increase in tank size causes gas mileage to decrease by 1 mi/gal. What should the size of the tank be for the Jupiter to have the greatest range (number of miles on a tank of gas)?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #135606 by kev82(151)![]() ![]() ![]() You can put this solution on YOUR website! v = volume of tank \n" ); document.write( "r = miles per gallon\r \n" ); document.write( "\n" ); document.write( "distance = vr\r \n" ); document.write( "\n" ); document.write( "dr/dv = -0.5 (every increase of 2 decreases by 1)\r \n" ); document.write( "\n" ); document.write( "r = c - 0.5v (integrate)\r \n" ); document.write( "\n" ); document.write( "22 = c - 6 (substitute r=22,v=12)\r \n" ); document.write( "\n" ); document.write( "c = 28\r \n" ); document.write( "\n" ); document.write( "v(28-0.5v) = distance (substitute)\r \n" ); document.write( "\n" ); document.write( "28-0.5v -0.5v = 28-v = 0 (differentiate and solve for turning point)\r \n" ); document.write( "\n" ); document.write( "v = 28 \r \n" ); document.write( "\n" ); document.write( "r = 28 - 14 = 14 (calculate r at turning point)\r \n" ); document.write( "\n" ); document.write( "14*28 = 392 (calculate distance) \n" ); document.write( " |