document.write( "Question 180849: the diagram shows the a right angled triangle. based on the length of the sides of the triangle form a quadratic equation in term of y.
\n" );
document.write( "AB=(y+3)cm
\n" );
document.write( "BC=3y cm
\n" );
document.write( "AC= (4y-3) cm
\n" );
document.write( "help me pless...tq for helping me,....
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #135587 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! the diagram shows the a right angled triangle. based on the length of the sides of the triangle form a quadratic equation in term of y. \n" ); document.write( "AB=(y+3)cm \n" ); document.write( "BC=3y cm \n" ); document.write( "AC= (4y-3) cm \n" ); document.write( "---------------- \n" ); document.write( "The answer depends on which of the lengths is the hypotenuse; \n" ); document.write( "I'm going to assume that y+3 is the hypotenuse. \n" ); document.write( "---------------- \n" ); document.write( "(y+3)^2 = (3y)^2 + (4y-3)^2 \n" ); document.write( "y^2 + 6y + 9 = 9y^2 + 16y^2-24y+9 \n" ); document.write( "24y^2 -30y = 0 \n" ); document.write( "3y(8y-10) = 0 \n" ); document.write( "y = 0 or y = 10/8 = 5/4 \n" ); document.write( "------------------------ \n" ); document.write( "If y = 5/4 cm \n" ); document.write( "AB = (5/4) + 3 = 5/4 + 12/4 = 17/4 cm \n" ); document.write( "BC = 3*(5/4) = 15/4 \n" ); document.write( "AC = 4(5/4)-3 = 5-3 = 2 cm \n" ); document.write( "================================ \n" ); document.write( "If one of the other sides is really the hypotenuse, \n" ); document.write( "use Pythagoras, as I have, and solve for \"y\".\r \n" ); document.write( "\n" ); document.write( "================================================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |