document.write( "Question 180822: find the derivative.
\n" ); document.write( "1. G(x) = xln(x + sqaure root of quantity 1 + x^2) - square root of quantity 1 + x^2
\n" ); document.write( "

Algebra.Com's Answer #135563 by user_dude2008(1862)\"\" \"About 
You can put this solution on YOUR website!
g(x) = xln(x + sqrt(1 + x^2)) - sqrt(1 + x^2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let z=sqrt(1 + x^2) ----> z'=x/(sqrt(1+x^2))\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(x) = xln(x + z) - z\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g'(x) = (x*z')/(x + z) - ln(x+z) - z'\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g'(x) = (x*(x/(sqrt(1+x^2))))/(x + sqrt(1 + x^2)) - ln(x+sqrt(1+x^2)) - x/(sqrt(1+x^2))\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g'(x) = ln(x+sqrt(1+x^2))
\n" ); document.write( "
\n" );