document.write( "Question 179666: Three times a number plus twice a second number is 41. Also, four times the first plus five times the second is 71. Find the numbers. \n" ); document.write( "
Algebra.Com's Answer #134591 by Mathtut(3670)\"\" \"About 
You can put this solution on YOUR website!
Three times a number plus twice a second number is 41. Also, four times the first plus five times the second is 71. Find the number
\n" ); document.write( ":
\n" ); document.write( "let a and b be our numbers
\n" ); document.write( ":
\n" ); document.write( "3a+2b=41.........eq 1
\n" ); document.write( "4a+5b=71.........eq 2
\n" ); document.write( ":
\n" ); document.write( "multiply eq 1 by -4 and eq 2 by 3 and add the two equations together
\n" ); document.write( ":
\n" ); document.write( "-4(3a+2b=41)---->-12a-8b=-164
\n" ); document.write( "3(4a+5b=71)------>12a+15b=213
\n" ); document.write( ":
\n" ); document.write( "-12a-8b=-164.....eq 1 revised
\n" ); document.write( "12a+15b=213......eq 2 revised
\n" ); document.write( ":
\n" ); document.write( "the a terms are eliminated -12a+12a=0. We are left with -8b+15b=-164+213
\n" ); document.write( ":
\n" ); document.write( "7b=49
\n" ); document.write( ":
\n" ); document.write( "\"highlight%28b=7%29\"
\n" ); document.write( ":
\n" ); document.write( "take b's value and plug it back into any equation. I chose eq 1
\n" ); document.write( ":
\n" ); document.write( "3a+2(7)=41
\n" ); document.write( ":
\n" ); document.write( "3a=27
\n" ); document.write( ":
\n" ); document.write( "\"highlight%28a=9%29\"
\n" ); document.write( "
\n" );