document.write( "Question 179598: Factor the trinomial 42b^2-43b-7= \n" ); document.write( "
Algebra.Com's Answer #134518 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"42b%5E2-43b-7\", we can see that the first coefficient is \"42\", the second coefficient is \"-43\", and the last term is \"-7\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"42\" by the last term \"-7\" to get \"%2842%29%28-7%29=-294\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-294\" (the previous product) and add to the second coefficient \"-43\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-294\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-294\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,7,14,21,42,49,98,147,294\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-7,-14,-21,-42,-49,-98,-147,-294\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-294\".\r
\n" ); document.write( "\n" ); document.write( "1*(-294)
\n" ); document.write( "2*(-147)
\n" ); document.write( "3*(-98)
\n" ); document.write( "6*(-49)
\n" ); document.write( "7*(-42)
\n" ); document.write( "14*(-21)
\n" ); document.write( "(-1)*(294)
\n" ); document.write( "(-2)*(147)
\n" ); document.write( "(-3)*(98)
\n" ); document.write( "(-6)*(49)
\n" ); document.write( "(-7)*(42)
\n" ); document.write( "(-14)*(21)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-43\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-2941+(-294)=-293
2-1472+(-147)=-145
3-983+(-98)=-95
6-496+(-49)=-43
7-427+(-42)=-35
14-2114+(-21)=-7
-1294-1+294=293
-2147-2+147=145
-398-3+98=95
-649-6+49=43
-742-7+42=35
-1421-14+21=7
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"6\" and \"-49\" add to \"-43\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"6\" and \"-49\" both multiply to \"-294\" and add to \"-43\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-43b\" with \"6b-49b\". Remember, \"6\" and \"-49\" add to \"-43\". So this shows us that \"6b-49b=-43b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"42b%5E2%2Bhighlight%286b-49b%29-7\" Replace the second term \"-43b\" with \"6b-49b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2842b%5E2%2B6b%29%2B%28-49b-7%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6b%287b%2B1%29%2B%28-49b-7%29\" Factor out the GCF \"6b\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6b%287b%2B1%29-7%287b%2B1%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286b-7%29%287b%2B1%29\" Combine like terms. Or factor out the common term \"7b%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"42b%5E2-43b-7\" factors to \"%286b-7%29%287b%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%286b-7%29%287b%2B1%29\" to get \"42b%5E2-43b-7\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );