document.write( "Question 177821: Quadratic Equations
\n" ); document.write( "Find the x-intercepts of each parabola.
\n" ); document.write( "a) y=x^2-4x+4
\n" ); document.write( "b) y=4x^2-12x+9
\n" ); document.write( "

Algebra.Com's Answer #133486 by jojo14344(1513)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "a) \"y=x%5E2-4x%2B4\"
\n" ); document.write( "Factorable being a perfect square: \"%28x-2%29%28x-2%29=0\"
\n" ); document.write( "it shows you got X-intercept, (2,0)
\n" ); document.write( "Let' see the vertex to see where we are, via Vertex Form: \"y=a%28x-h%29%5E2%2Bk2\"
\n" ); document.write( "We complete the square of the given eqn:
\n" ); document.write( "\"%28x%5E2-4x%2B4%29%2B4-4\"
\n" ); document.write( "\"%28x-2%29%5E2%2B0\"
\n" ); document.write( "The vertex exists @ (2,0)
\n" ); document.write( "Letting \"f%28x%29=0\"
\n" ); document.write( "\"y=0%5E2-4%280%29%2B4\"
\n" ); document.write( "\"y=4\", Y-Intercept
\n" ); document.write( "Conclusion, given eqn it has ONLY X-Intercept because the vertex lies on the x-axis.
\n" ); document.write( "As you see below;
\n" ); document.write( "
\n" ); document.write( "b)\"y=4x%5E2-12x%2B9\"
\n" ); document.write( "For this solution toe xist, the discriminant should not be a negative number:
\n" ); document.write( "By Quadratic so we can see the roots (X-intercepts):
\n" ); document.write( "where\"system%28a=4%2Cb=-12%2Cc=9%29\"
\n" ); document.write( "Solving for the discriminant: \"-b%5E2-4ac=-12%5E2-4%2A4%2A0=144-144=0\"
\n" ); document.write( "The dicriminant is zero. Therefore, there's only one solution.
\n" ); document.write( "
\n" ); document.write( "\"x=%2812%2B-sqrt%28144-144%29%29%2F8=%2812%2B-0%29%2F8=12%2F8=highlight%281.5=x%29\"
\n" ); document.write( "Let \"f%28x%29=0\"
\n" ); document.write( "\"y=4%280%29%5E2-12%280%29%2B9\"
\n" ); document.write( "\"y=9\" Y-intercept
\n" ); document.write( "
\n" ); document.write( "Thank you,
\n" ); document.write( "Jojo
\n" ); document.write( "
\n" ); document.write( "
\n" );