document.write( "Question 177905: A normally distributed population has a mean of 60 and a standard deviation of 6.\r
\n" ); document.write( "\n" ); document.write( "Compute the probability of a value between 51 and 66. ________ \r
\n" ); document.write( "\n" ); document.write( "Compute the probability of a value less than 51. ________ \r
\n" ); document.write( "\n" ); document.write( "Compute the probability of a value greater than 72. ________
\n" ); document.write( "

Algebra.Com's Answer #133049 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
A normally distributed population has a mean of 60 and a stand deviation of 6.
\n" ); document.write( "-------------
\n" ); document.write( "You need to find the z-value on each of these:
\n" ); document.write( "For example:
\n" ); document.write( "Compute the probability of a value between 51 and 66. ________
\n" ); document.write( "z(66) = (66-60)/6 = 1
\n" ); document.write( "z(51) = (51-60)/6 = -1.5
\n" ); document.write( "P(51 < x < 66) = P(-1.5 < z < 1) = 0.77454..
\n" ); document.write( "-----------------------------------------------
\n" ); document.write( "
\n" ); document.write( "Compute the probability of a value less than 51. ________
\n" ); document.write( "P(z < 51) = P(z< -1.5) = 0.06681..
\n" ); document.write( "-----------------------------------------------
\n" ); document.write( "
\n" ); document.write( "Compute the probability of a value greater than 72. ________
\n" ); document.write( "z(72) = (72 - 60)/6 = 12/6 = 2
\n" ); document.write( "P(x > 72) = P(z > 2) = 0.02275...
\n" ); document.write( "-------------------
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );