document.write( "Question 176608: graph each system of constraints. find all vertices. evaluate the objective function at each vertex to find teh maximum or minimum value..:)\r
\n" );
document.write( "\n" );
document.write( "*** all the < and > have lines under neath them.. so all the arrows are equal or greater than...\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "1)x<3
\n" );
document.write( " y<7
\n" );
document.write( " x>0,y>0
\n" );
document.write( "maximum for p=2x+3y\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "2) 2x+y<30
\n" );
document.write( " x+y<20
\n" );
document.write( " x>0, y>0
\n" );
document.write( "minimum for c=x+4y\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #131686 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! 1) \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Max. value=27 occuring at (3,7), min. value =0 occuring at (0,0). \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "2)First find the feasible region bounded by the lines, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Let's look at the graph of the two lines. \n" ); document.write( "The vertices are then the x-intercept and y-intercept of the graphs. \n" ); document.write( " \n" ); document.write( "Y-intercept: (0,20) \n" ); document.write( "X-intercept: (15,0) \n" ); document.write( "The final point is their intersection point. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "The minimum for C=x+4y is 0 and occurs at (0,0). \n" ); document.write( " |