document.write( "Question 175694: how do I solve the system of equations: 2x+3y=40 and -2x+2y=20? \n" ); document.write( "
Algebra.Com's Answer #130789 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Start with the given system of equations:\r
\n" ); document.write( "\n" ); document.write( "\"system%282x%2B3y=40%2C-2x%2B2y=20%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Add the equations together. You can do this by simply adding the two left sides and the two right sides separately like this:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%2B3y%29%2B%28-2x%2B2y%29=%2840%29%2B%2820%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%2B-2x%29%2B%283y%2B2y%29=40%2B20\" Group like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0x%2B5y=60\" Combine like terms. Notice how the x terms cancel out.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5y=60\" Simplify.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%2860%29%2F%285%29\" Divide both sides by \"5\" to isolate \"y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=12\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%2B3y=40\" Now go back to the first equation.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%2B3%2812%29=40\" Plug in \"y=12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%2B36=40\" Multiply.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x=40-36\" Subtract \"36\" from both sides.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x=4\" Combine like terms on the right side.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%284%29%2F%282%29\" Divide both sides by \"2\" to isolate \"x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=2\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our answer is \"x=2\" and \"y=12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Which form the ordered pair .\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means that the system is consistent and independent.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice when we graph the equations, we see that they intersect at . So this visually verifies our answer.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Graph of \"2x%2B3y=40\" (red) and \"-2x%2B2y=20\" (green)
\n" ); document.write( "
\n" ); document.write( "
\n" );