document.write( "Question 174855: What are the two binomial factors of 6s^2+40s-64? \n" ); document.write( "
Algebra.Com's Answer #129927 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"6s%5E2%2B40s-64\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%283s%5E2%2B20s-32%29\" Factor out the GCF \"2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"3s%5E2%2B20s-32\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"3s%5E2%2B20s-32\" we can see that the first term is \"3s%5E2\" and the last term is \"-32\" where the coefficients are 3 and -32 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 3 and the last coefficient -32 to get -96. Now what two numbers multiply to -96 and add to the middle coefficient 20? Let's list all of the factors of -96:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -96:\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,12,16,24,32,48,96\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-12,-16,-24,-32,-48,-96 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -96\r
\n" ); document.write( "\n" ); document.write( "(1)*(-96)\r
\n" ); document.write( "\n" ); document.write( "(2)*(-48)\r
\n" ); document.write( "\n" ); document.write( "(3)*(-32)\r
\n" ); document.write( "\n" ); document.write( "(4)*(-24)\r
\n" ); document.write( "\n" ); document.write( "(6)*(-16)\r
\n" ); document.write( "\n" ); document.write( "(8)*(-12)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(96)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(48)\r
\n" ); document.write( "\n" ); document.write( "(-3)*(32)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(24)\r
\n" ); document.write( "\n" ); document.write( "(-6)*(16)\r
\n" ); document.write( "\n" ); document.write( "(-8)*(12)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 20? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-961+(-96)=-95
2-482+(-48)=-46
3-323+(-32)=-29
4-244+(-24)=-20
6-166+(-16)=-10
8-128+(-12)=-4
-196-1+96=95
-248-2+48=46
-332-3+32=29
-424-4+24=20
-616-6+16=10
-812-8+12=4
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -4 and 24 add up to 20 and multiply to -96\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"3s%5E2%2B20s-32\", replace \"20s\" with \"-4s%2B24s\" (notice \"-4s%2B24s\" adds up to \"20s\". So it is equivalent to \"20s\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3s%5E2%2Bhighlight%28-4s%2B24s%29%2B-32\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"3s%5E2-4s%2B24s-32\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283s%5E2-4s%29%2B%2824s-32%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"s%283s-4%29%2B8%283s-4%29\" Factor out the GCF of \"s\" out of the first group. Factor out the GCF of \"8\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28s%2B8%29%283s-4%29\" Since we have a common term of \"3s-4\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3s%5E2-4s%2B24s-32\" factors to \"%28s%2B8%29%283s-4%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"3s%5E2%2B20s-32\" factors to \"%28s%2B8%29%283s-4%29\" (since \"3s%5E2%2B20s-32\" is equivalent to \"3s%5E2-4s%2B24s-32\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our expression goes from \"2%283s%5E2%2B20s-32%29\" and factors further to \"2%28s%2B8%29%283s-4%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6s%5E2%2B40s-64\" factors to \"2%28s%2B8%29%283s-4%29\"\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "So the two binomial factors are \"s%2B8\" and \"3s-4\"
\n" ); document.write( "
\n" );