document.write( "Question 174726: wRITE THE EQUATION OF THE LINE L SATISFYING THE GIVEN GEOMETRIC CONDITIONS.\r
\n" );
document.write( "\n" );
document.write( " L has x-intercept (4,0) and Y intercept(0,2) \n" );
document.write( "
Algebra.Com's Answer #129785 by nerdybill(7384)![]() ![]() You can put this solution on YOUR website! The \"slope-intercept\" form of a line is: \n" ); document.write( "y = mx + b \n" ); document.write( "where \n" ); document.write( "m is the slope \n" ); document.write( "b is the y-intercept at (0,b) \n" ); document.write( ". \n" ); document.write( "For any two points (on a straight line) \n" ); document.write( "(x1,y1) and (x2,y2) \n" ); document.write( "the slope is \n" ); document.write( "m = (y2-y1)/(x2-x1) \n" ); document.write( ". \n" ); document.write( "In your problem, the two points were: \n" ); document.write( "(4,0) and (0,2) \n" ); document.write( "Substituting into: \n" ); document.write( "m = (y2-y1)/(x2-x1) \n" ); document.write( "m = (2-0)/(0-4) \n" ); document.write( "m = (2)/(-4) \n" ); document.write( "m = -1/2 \n" ); document.write( ". \n" ); document.write( "The problem gave the y-intercept at (0,2) \n" ); document.write( "Therefore, b = 2 \n" ); document.write( ". \n" ); document.write( "Plugging it all back into: \n" ); document.write( "y = mx + b \n" ); document.write( "we have: \n" ); document.write( "y = (-1/2)x + 2 \n" ); document.write( "or \n" ); document.write( "y = -x/2 + 2 \n" ); document.write( " \n" ); document.write( " |