document.write( "Question 24397: Square root 8 + Square root 18 \n" ); document.write( "
Algebra.Com's Answer #12973 by AnlytcPhil(1806)\"\" \"About 
You can put this solution on YOUR website!
Square root 8 + Square root 18\r\n" );
document.write( "   _    __\r\n" );
document.write( "  Ö8 + Ö18\r\n" );
document.write( "\r\n" );
document.write( "Break 8 into prime factors: 8 = 2·4 = 2·2·2\r\n" );
document.write( "\r\n" );
document.write( "Break 18 into prime factors: 18 = 2·9 = 2·3·3\r\n" );
document.write( "  _____    _____\r\n" );
document.write( " Ö2·2·2 + Ö2·3·3\r\n" );
document.write( "\r\n" );
document.write( "Since it is a square root, use parentheses to group like factors\r\n" );
document.write( "into groups of 2. (If it were a cube root you would group by three\r\n" );
document.write( "like factors, fourth root -- group by fours, etc.\r\n" );
document.write( "\r\n" );
document.write( "  _______    _______\r\n" );
document.write( " Ö(2·2)·2 + Ö2·(3·3)\r\n" );
document.write( "\r\n" );
document.write( "Each group of factors under the radical comes outside the radical\r\n" );
document.write( "as a single factor.  That is, the (2·2) under the first radical\r\n" );
document.write( "comes out front as a single 2.  The (3·3) under the second radical\r\n" );
document.write( "comes out front as a single 3.  The 2's that did not pair up must\r\n" );
document.write( "stay under the radical.  So we have\r\n" );
document.write( "   _      _\r\n" );
document.write( "2·Ö2 + 3·Ö2\r\n" );
document.write( "                       _\r\n" );
document.write( "Now we factor out the Ö2 and get\r\n" );
document.write( " _\r\n" );
document.write( "Ö2·(2 + 3)\r\n" );
document.write( " _\r\n" );
document.write( "Ö2·(5)\r\n" );
document.write( "   _\r\n" );
document.write( "5·Ö2\r\n" );
document.write( "\r\n" );
document.write( "Edwin\r\n" );
document.write( "AnlytcPhil@aol.com
\n" ); document.write( "
\n" );