document.write( "Question 173557: 3^(x^2+20)=(1/27)^(3x) \n" ); document.write( "
Algebra.Com's Answer #128750 by nycsub_teacher(90)\"\" \"About 
You can put this solution on YOUR website!
3^(x^2+20)=(1/27)^(3x)\r
\n" ); document.write( "\n" ); document.write( "The idea is to get the same base on both sides of the exponential equation.\r
\n" ); document.write( "\n" ); document.write( "We can express 1/27 as 3^(-3) because they both mean the same thing.\r
\n" ); document.write( "\n" ); document.write( "We now have this:\r
\n" ); document.write( "\n" ); document.write( "3^(x^2+20)= [3^(-3)]^(3x)\r
\n" ); document.write( "\n" ); document.write( "Do you see that we now have the same base 3 on both sides?\r
\n" ); document.write( "\n" ); document.write( "We now bring down the exponents and set them them equal to each other.\r
\n" ); document.write( "\n" ); document.write( "Before we do that, [3^(-3)]^(3x)becomes 3^(-9x). Do you see how this happened?\r
\n" ); document.write( "\n" ); document.write( "3^(x^2 + 20) = 3^(-9x)\r
\n" ); document.write( "\n" ); document.write( "x^2 + 20 = -9x\r
\n" ); document.write( "\n" ); document.write( "x^2 + 9x + 20 = 0\r
\n" ); document.write( "\n" ); document.write( "We now have a quadratic equation that can be factored.\r
\n" ); document.write( "\n" ); document.write( "(x + 4) (x + 5) = 0\r
\n" ); document.write( "\n" ); document.write( "Set each factor equal to zero and solve for x.\r
\n" ); document.write( "\n" ); document.write( "x + 4 = 0\r
\n" ); document.write( "\n" ); document.write( "x = -4\r
\n" ); document.write( "\n" ); document.write( "=========\r
\n" ); document.write( "\n" ); document.write( "x + 5 = 0\r
\n" ); document.write( "\n" ); document.write( "x = -5\r
\n" ); document.write( "\n" ); document.write( "Did you follow?\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );