document.write( "Question 173547: find a quadratic model for the set of values (-2,-15),(0,-3),(4,-27) \n" ); document.write( "
Algebra.Com's Answer #128418 by Mathtut(3670)\"\" \"About 
You can put this solution on YOUR website!
\"-15=A%28-2%29%5E2%2BB%28-2%29%2BC\"
\n" ); document.write( "\"-3=A%280%29%5E2%2BB%280%29%2BC\"
\n" ); document.write( "\"-27=A%284%29%5E2%2BB%284%29%2BC\"
\n" ); document.write( ":
\n" ); document.write( "-15=4A-2B+C...eq 1
\n" ); document.write( "\"highlight%28-3+=C%29\".........eq 2
\n" ); document.write( "-27=16A+4B+C..eq 3
\n" ); document.write( ":
\n" ); document.write( "lets take C's value in eq 2 and plug it into eq 1 and 3
\n" ); document.write( ":
\n" ); document.write( "4A-2B+(-3)=-15....eq (4)---->4A-2B=-12----mult by 2---->8A-4B=-24
\n" ); document.write( "16A+4B+(-3)=-27...eq (5)---->16A+4B=-24
\n" ); document.write( ":
\n" ); document.write( "8A-4B=-24.....eq (4) revised
\n" ); document.write( "16A+4B=-24....eq (5) revised
\n" ); document.write( ":
\n" ); document.write( "now lets solve by elimination after we multiplied eq 4 by 2 . Add eq 4 and 5 together and as you can see the B terms will be eliminated(-4B+4B=0) and we are left with
\n" ); document.write( ":8A+16A=-24-24
\n" ); document.write( ":
\n" ); document.write( "24A=-48
\n" ); document.write( ":
\n" ); document.write( "\"highlight%28A=-2%29\"
\n" ); document.write( ":
\n" ); document.write( "plug A's found value back into eq 4.--> 8(-2)-4B=-24
\n" ); document.write( ":
\n" ); document.write( "-4b=-8
\n" ); document.write( ":
\n" ); document.write( "\"highlight%28B=2%29\"
\n" ); document.write( "so
\n" ); document.write( "since \"y=Ax%5E2%2BBx%2BC\"...plug in the found values
\n" ); document.write( "\"highlight%28y=-2x%5E2%2B2x-3%29\"
\n" ); document.write( "
\n" );