document.write( "Question 173430This question is from textbook introduction to college mathematics
\n" );
document.write( ": The decay rate of krypton-85 is 6.3% per day. What is the half-life?
\n" );
document.write( "Using the exponential decay function P(t) =Po^e^-kt \n" );
document.write( "
Algebra.Com's Answer #128347 by ankor@dixie-net.com(22740)![]() ![]() You can put this solution on YOUR website! The decay rate of krypton-85 is 6.3% per day. What is the half-life? \n" ); document.write( "Using the exponential decay function P(t) =Po^e^-kt \n" ); document.write( ": \n" ); document.write( "The exponential decay formula that I am familiar with: \n" ); document.write( "A = Ao[2^(-t/h)] \n" ); document.write( "where \n" ); document.write( "Ao is the initial amt \n" ); document.write( "A = final amt \n" ); document.write( "t = time \n" ); document.write( "h = half-life of the substance \n" ); document.write( ": \n" ); document.write( "Assume Ao = 100, Assume t = 1 day, find h (half life in days) \n" ); document.write( "After 1 day, A = 100 - 6.3 = 93.7 \n" ); document.write( ": \n" ); document.write( "100 * 2^(-1/h) = 93.7 \n" ); document.write( ": \n" ); document.write( "2^(-1/h) = \n" ); document.write( ": \n" ); document.write( "2^(-1/h) = .937 \n" ); document.write( ": \n" ); document.write( "ln[2^(-1/h)) = ln(.937) \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( "h = \n" ); document.write( "h = 10.66 days is the half life of krypton-85 according to this information \n" ); document.write( ": \n" ); document.write( "In actual fact I think they mean 6.3% per year, hence, 10.66 yrs half life \n" ); document.write( " |