document.write( "Question 173375: Please help Im stuck on these problems. Factoring\r
\n" ); document.write( "\n" ); document.write( "15a^3-30a^4-5a^5\r
\n" ); document.write( "\n" ); document.write( "x^2-8+7x\r
\n" ); document.write( "\n" ); document.write( "4a-5b+6c
\n" ); document.write( "49b^2-18+21b
\n" ); document.write( "

Algebra.Com's Answer #128224 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\"15a%5E3-30a%5E4-5a%5E5\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-5a%5E5-30a%5E4%2B15a%5E3\" Rearrange the terms in descending order\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-5a%5E3%28a%5E2%2B6a-3%29\" Factor out the GCF \"-5a%5E3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"a%5E2%2B6a-3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"a%5E2%2B6a-3\" we can see that the first term is \"a%5E2\" and the last term is \"-3\" where the coefficients are 1 and -3 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 1 and the last coefficient -3 to get -3. Now what two numbers multiply to -3 and add to the middle coefficient 6? Let's list all of the factors of -3:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -3:\r
\n" ); document.write( "\n" ); document.write( "1,3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-3 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -3\r
\n" ); document.write( "\n" ); document.write( "(1)*(-3)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 6? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-31+(-3)=-2
-13-1+3=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "None of these pairs of factors add to 6. So the expression \"1a%5E2%2B6a-3\" cannot be factored\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-5a%5E5-30a%5E4%2B15a%5E3\" factors to \"-5a%5E3%28a%5E2%2B6a-3%29\"\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2-8%2B7x\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2B7x-8\" Rearrange the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2%2B7x-8\", we can see that the first coefficient is \"1\", the second coefficient is \"7\", and the last term is \"-8\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-8\" to get \"%281%29%28-8%29=-8\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-8\" (the previous product) and add to the second coefficient \"7\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-8\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-8\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,8\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-8\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-8\".\r
\n" ); document.write( "\n" ); document.write( "1*(-8)
\n" ); document.write( "2*(-4)
\n" ); document.write( "(-1)*(8)
\n" ); document.write( "(-2)*(4)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"7\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-81+(-8)=-7
2-42+(-4)=-2
-18-1+8=7
-24-2+4=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"8\" add to \"7\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"8\" both multiply to \"-8\" and add to \"7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"7x\" with \"-x%2B8x\". Remember, \"-1\" and \"8\" add to \"7\". So this shows us that \"-x%2B8x=7x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%28-x%2B8x%29-8\" Replace the second term \"7x\" with \"-x%2B8x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2-x%29%2B%288x-8%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-1%29%2B%288x-8%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-1%29%2B8%28x-1%29\" Factor out \"8\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B8%29%28x-1%29\" Combine like terms. Or factor out the common term \"x-1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2%2B7x-8\" factors to \"%28x%2B8%29%28x-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28x%2B8%29%28x-1%29\" to get \"x%5E2%2B7x-8\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 3\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since there is nothing in common between the terms of \"4a-5b%2B6c\" and there are no exponents, this means that we cannot factor \"4a-5b%2B6c\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 4\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"49b%5E2-18%2B21b\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"49b%5E2%2B21b-18\" Rearrange the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"49b%5E2%2B21b-18\", we can see that the first coefficient is \"49\", the second coefficient is \"21\", and the last term is \"-18\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"49\" by the last term \"-18\" to get \"%2849%29%28-18%29=-882\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-882\" (the previous product) and add to the second coefficient \"21\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-882\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-882\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,7,9,14,18,21,42,49,63,98,126,147,294,441,882\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-7,-9,-14,-18,-21,-42,-49,-63,-98,-126,-147,-294,-441,-882\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-882\".\r
\n" ); document.write( "\n" ); document.write( "1*(-882)
\n" ); document.write( "2*(-441)
\n" ); document.write( "3*(-294)
\n" ); document.write( "6*(-147)
\n" ); document.write( "7*(-126)
\n" ); document.write( "9*(-98)
\n" ); document.write( "14*(-63)
\n" ); document.write( "18*(-49)
\n" ); document.write( "21*(-42)
\n" ); document.write( "(-1)*(882)
\n" ); document.write( "(-2)*(441)
\n" ); document.write( "(-3)*(294)
\n" ); document.write( "(-6)*(147)
\n" ); document.write( "(-7)*(126)
\n" ); document.write( "(-9)*(98)
\n" ); document.write( "(-14)*(63)
\n" ); document.write( "(-18)*(49)
\n" ); document.write( "(-21)*(42)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"21\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-8821+(-882)=-881
2-4412+(-441)=-439
3-2943+(-294)=-291
6-1476+(-147)=-141
7-1267+(-126)=-119
9-989+(-98)=-89
14-6314+(-63)=-49
18-4918+(-49)=-31
21-4221+(-42)=-21
-1882-1+882=881
-2441-2+441=439
-3294-3+294=291
-6147-6+147=141
-7126-7+126=119
-998-9+98=89
-1463-14+63=49
-1849-18+49=31
-2142-21+42=21
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-21\" and \"42\" add to \"21\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-21\" and \"42\" both multiply to \"-882\" and add to \"21\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"21b\" with \"-21b%2B42b\". Remember, \"-21\" and \"42\" add to \"21\". So this shows us that \"-21b%2B42b=21b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"49b%5E2%2Bhighlight%28-21b%2B42b%29-18\" Replace the second term \"21b\" with \"-21b%2B42b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2849b%5E2-21b%29%2B%2842b-18%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"7b%287b-3%29%2B%2842b-18%29\" Factor out the GCF \"7b\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"7b%287b-3%29%2B6%287b-3%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%287b%2B6%29%287b-3%29\" Combine like terms. Or factor out the common term \"7b-3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"49b%5E2%2B21b-18\" factors to \"%287b%2B6%29%287b-3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%287b%2B6%29%287b-3%29\" to get \"49b%5E2%2B21b-18\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );