document.write( "Question 172664: hey,
\n" );
document.write( "could you please help me solving the following 2 equations:
\n" );
document.write( "Determine the equation of the parabola, in vertax form, with:
\n" );
document.write( "a) vertex (-1,-3) that passes through the point (5,8)
\n" );
document.write( "b) vertex (-4,3) and a y-intercept of 7.\r
\n" );
document.write( "\n" );
document.write( "i will be waiting for the solutions, thank you for your time.\r
\n" );
document.write( "\n" );
document.write( "thank you again,
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #127520 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Determine the equation of the parabola, in vertax form, with: \n" ); document.write( "a) vertex (-1,-3) that passes through the point (5,8) \n" ); document.write( "Form: (x-h)^2 = 4p(y-k) \n" ); document.write( "h=-1, k=-3, and y=8 when x=5; solve for p \n" ); document.write( "(5+1)^2 = 4p(8+3) \n" ); document.write( "36 = 4p(11) \n" ); document.write( "4p = 36/11 \n" ); document.write( "--------- \n" ); document.write( "Equation: (x+1)^2 = (9/11)(y+3) \n" ); document.write( "------------------------------------------- \n" ); document.write( "b) vertex (-4,3) and a y-intercept of 7. \n" ); document.write( "intercept is the point (0,7) \n" ); document.write( "(0+4)^2 = 4p(3-7) \n" ); document.write( "16 = 4p(-4) \n" ); document.write( "4p = -4 \n" ); document.write( "------------- \n" ); document.write( "(x+4)^2 =-4(y-3) \n" ); document.write( "===================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " \n" ); document.write( " |