document.write( "Question 171506: factor the trinomial x^2+x-12, 9x^2-24x+6, 2x^2+9x-x-35, 4-5x-6x^2 \n" ); document.write( "
Algebra.Com's Answer #126650 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'll do the first two to get you started\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2%2Bx-12\", we can see that the first coefficient is \"1\", the second coefficient is \"1\", and the last term is \"-12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-12\" to get \"%281%29%28-12%29=-12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-12\" (the previous product) and add to the second coefficient \"1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-12\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-12\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,12\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-12\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-12\".\r
\n" ); document.write( "\n" ); document.write( "1*(-12)
\n" ); document.write( "2*(-6)
\n" ); document.write( "3*(-4)
\n" ); document.write( "(-1)*(12)
\n" ); document.write( "(-2)*(6)
\n" ); document.write( "(-3)*(4)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-121+(-12)=-11
2-62+(-6)=-4
3-43+(-4)=-1
-112-1+12=11
-26-2+6=4
-34-3+4=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-3\" and \"4\" add to \"1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-3\" and \"4\" both multiply to \"-12\" and add to \"1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"1x\" with \"-3x%2B4x\". Remember, \"-3\" and \"4\" add to \"1\". So this shows us that \"-3x%2B4x=1x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%28-3x%2B4x%29-12\" Replace the second term \"1x\" with \"-3x%2B4x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2-3x%29%2B%284x-12%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-3%29%2B%284x-12%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-3%29%2B4%28x-3%29\" Factor out \"4\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B4%29%28x-3%29\" Combine like terms. Or factor out the common term \"x-3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2%2Bx-12\" factors to \"%28x%2B4%29%28x-3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28x%2B4%29%28x-3%29\" to get \"x%5E2%2Bx-12\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9x%5E2-24x%2B6\", we can see that the first coefficient is \"9\", the second coefficient is \"-24\", and the last term is \"6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"6\" to get \"%289%29%286%29=54\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"54\" (the previous product) and add to the second coefficient \"-24\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"54\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"54\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,9,18,27,54\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-9,-18,-27,-54\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"54\".\r
\n" ); document.write( "\n" ); document.write( "1*54
\n" ); document.write( "2*27
\n" ); document.write( "3*18
\n" ); document.write( "6*9
\n" ); document.write( "(-1)*(-54)
\n" ); document.write( "(-2)*(-27)
\n" ); document.write( "(-3)*(-18)
\n" ); document.write( "(-6)*(-9)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-24\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1541+54=55
2272+27=29
3183+18=21
696+9=15
-1-54-1+(-54)=-55
-2-27-2+(-27)=-29
-3-18-3+(-18)=-21
-6-9-6+(-9)=-15
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that there are no pairs of numbers which add to \"-24\". \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9x%5E2-24x%2B6\" cannot be factored. This means that the polynomial is prime.
\n" ); document.write( "
\n" ); document.write( "
\n" );