document.write( "Question 171139: I am totally clueless! please help me figure out this word problem. If the height of a right circular cylinder is quadrupled and the radius is divided by three, how is the volume changed? \n" ); document.write( "
Algebra.Com's Answer #126331 by ptaylor(2198)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Volume of a right circular cylinder is given by the formula:\r \n" ); document.write( "\n" ); document.write( "V=pi*r^2*h where r is radius and h is height\r \n" ); document.write( "\n" ); document.write( "Volume of original cylinger is: V1=pi*r^2*h \n" ); document.write( "Volume of new cylinder is: V2=pi*(r/3)^2*(4h); simplifying, we get: \n" ); document.write( "V2=pi*((r^2)/9)*4h= \n" ); document.write( "V2=(pi*r^2*h)*(4/9) but (pi*r^2*h)=V1, so we have: \n" ); document.write( "V2=(4/9)*V1\r \n" ); document.write( "\n" ); document.write( "So the Volume gets quite a bit smaller---4/9 of the original volume\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hope this helps---ptaylor \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |