document.write( "Question 2702: Please do you have a simple formula for finding the centre of a 2 dimensinal circle if I know 3 points on this circle? \n" ); document.write( "
Algebra.Com's Answer #1260 by xcentaur(357)\"\" \"About 
You can put this solution on YOUR website!
Let the equation of the circle be\r
\n" ); document.write( "\n" ); document.write( " (x-h)^2 + (y-k)^2 = r^2,\r
\n" ); document.write( "\n" ); document.write( "and substitute the three known points, getting 3 equations in 3
\n" ); document.write( "unknowns h, k, and r:\r
\n" ); document.write( "\n" ); document.write( " (x1-h)^2 + (y1-k)^2 = r^2
\n" ); document.write( " (x2-h)^2 + (y2-k)^2 = r^2
\n" ); document.write( " (x3-h)^2 + (y3-k)^2 = r^2\r
\n" ); document.write( "\n" ); document.write( "which you can solve simultaneously. First subtract the third equation
\n" ); document.write( "from the other two, thus eliminating r^2, h^2, and k^2. That will
\n" ); document.write( "leave you with 2 simultaneous linear equations in h and k to solve.
\n" ); document.write( "This you can do as long as the 3 points are not collinear. Then those
\n" ); document.write( "values of h and k can be used in the first equation to find the
\n" ); document.write( "radius:\r
\n" ); document.write( "\n" ); document.write( " r = sqrt[(x1-h)^2 + (y1-k)^2].\r
\n" ); document.write( "\n" ); document.write( "Example: Suppose a circle passes through the points (4,1), (-3,7), and
\n" ); document.write( "(5,-2). Then we know that:\r
\n" ); document.write( "\n" ); document.write( " (h-4)^2 + (k-1)^2 = r^2
\n" ); document.write( " (h+3)^2 + (k-7)^2 = r^2
\n" ); document.write( " (h-5)^2 + (k+2)^2 = r^2\r
\n" ); document.write( "\n" ); document.write( "Subtracting the first from the other two, you get:\r
\n" ); document.write( "\n" ); document.write( " (h+3)^2 - (h-4)^2 + (k-7)^2 - (k-1)^2 = 0,
\n" ); document.write( " (h-5)^2 - (h-4)^2 + (k+2)^2 - (k-1)^2 = 0,\r
\n" ); document.write( "\n" ); document.write( " h^2 + 6h + 9 - h^2 + 8h - 16 + k^2 - 14k + 49 - k^2 + 2k - 1 = 0
\n" ); document.write( " h^2 - 10h + 25 - h^2 + 8h - 16 + k^2 + 4k + 4 - k^2 + 2k - 1 = 0\r
\n" ); document.write( "\n" ); document.write( " 14h - 12k + 41 = 0
\n" ); document.write( " -2h + 6k + 12 = 0\r
\n" ); document.write( "\n" ); document.write( " 10h + 65 = 0
\n" ); document.write( " 30h + 125 = 0\r
\n" ); document.write( "\n" ); document.write( " h = -13/2
\n" ); document.write( " k = -25/6\r
\n" ); document.write( "\n" ); document.write( "Then\r
\n" ); document.write( "\n" ); document.write( " r = sqrt[(4+13/2)^2 + (1+25/6)^2]
\n" ); document.write( " = sqrt[4930]/6\r
\n" ); document.write( "\n" ); document.write( "Therefore the equation of the circle is:\r
\n" ); document.write( "\n" ); document.write( " (x+13/2)^2 + (y+25/6)^2 = 4930/36
\n" ); document.write( "


\n" ); document.write( "I learnt this very same problem from a site called http://www.mathforum.org/
\n" ); document.write( "


\n" ); document.write( "Hope this helps,
\n" ); document.write( "Best of luck \n" ); document.write( "

\n" );