document.write( "Question 169479:  Let f(n) = the number of zeros at the end of n! when n! is multiplied out.\r
\n" );
document.write( "\n" );
document.write( "Find:\r
\n" );
document.write( "\n" );
document.write( "f(12)\r
\n" );
document.write( "\n" );
document.write( "f(34) \n" );
document.write( "
| Algebra.Com's Answer #125278 by stanbon(75887)      You can put this solution on YOUR website! Let f(n) = the number of zeros at the end of n! when n! is multiplied out. \n" ); document.write( "Find: \n" ); document.write( "f(12) = 12! = 12*11*10*9*8*7*6*5*4*3*2*1 \n" ); document.write( "Find the number of times 10 is a factor. \n" ); document.write( "-------------------------- \n" ); document.write( "Change factors to prime number form: \n" ); document.write( "f(12) = 2^2*3 * 11 *2*5*3^2*2^3 *7*2*3 *5* 2^2 *3*2*1 \n" ); document.write( "f(12) = 2^10 * 3^4 * 5^2 * 7 \n" ); document.write( "The prime-factor form has two tens which is 2^2*5^2, so only two zeroes at the end \n" ); document.write( "of 12! \n" ); document.write( "--------------- \n" ); document.write( " \n" ); document.write( "f(34)= (2*17)*(2^4)*(3*5)*(2*7)*13*(12!) \n" ); document.write( "12! contributes 2 zeroes \n" ); document.write( "The other factors contribute 2*5 or one zero \n" ); document.write( "So, f(34) has a total of three zeroes at the tail end. \n" ); document.write( "================================================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " \n" ); document.write( " |