document.write( "Question 169053: I need to know how to do this and the book is confusing me
\n" ); document.write( "Factor completely:
\n" ); document.write( "2x3 – 26x2 + 80x\r
\n" ); document.write( "\n" ); document.write( "I would appreciate any help on this.
\n" ); document.write( "

Algebra.Com's Answer #124681 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"2x%5E3-26x%5E2%2B80x\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%28x%5E2-13x%2B40%29\" Factor out the GCF \"2x\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"x%5E2-13x%2B40\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2-13x%2B40\", we can see that the first coefficient is \"1\", the second coefficient is \"-13\", and the last term is \"40\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"40\" to get \"%281%29%2840%29=40\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"40\" (the previous product) and add to the second coefficient \"-13\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"40\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"40\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,8,10,20,40\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-8,-10,-20,-40\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"40\".\r
\n" ); document.write( "\n" ); document.write( "1*40
\n" ); document.write( "2*20
\n" ); document.write( "4*10
\n" ); document.write( "5*8
\n" ); document.write( "(-1)*(-40)
\n" ); document.write( "(-2)*(-20)
\n" ); document.write( "(-4)*(-10)
\n" ); document.write( "(-5)*(-8)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-13\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1401+40=41
2202+20=22
4104+10=14
585+8=13
-1-40-1+(-40)=-41
-2-20-2+(-20)=-22
-4-10-4+(-10)=-14
-5-8-5+(-8)=-13
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-5\" and \"-8\" add to \"-13\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-5\" and \"-8\" both multiply to \"40\" and add to \"-13\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-13x\" with \"-5x-8x\". Remember, \"-5\" and \"-8\" add to \"-13\". So this shows us that \"-5x-8x=-13x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%28-5x-8x%29%2B40\" Replace the second term \"-13x\" with \"-5x-8x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2-5x%29%2B%28-8x%2B40%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-5%29%2B%28-8x%2B40%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-5%29-8%28x-5%29\" Factor out \"8\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-8%29%28x-5%29\" Combine like terms. Or factor out the common term \"x-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2-13x%2B40\" factors to \"%28x-8%29%28x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our expression goes from \"2x%28x%5E2-13x%2B40%29\" and factors further to \"2x%28x-8%29%28x-5%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2x%5E3-26x%5E2%2B80x\" completely factors to \"2x%28x-8%29%28x-5%29\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );