document.write( "Question 167956: The factoring Strategy
\n" ); document.write( "Factor each polynomial completely. If a polynomial is prime, say so. \r
\n" ); document.write( "\n" ); document.write( "66. 8b2 + 24b + 18
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #123797 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\"8b%5E2%2B24b%2B18\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%284b%5E2%2B12b%2B9%29\" Factor out the GCF \"2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"4b%5E2%2B12b%2B9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4b%5E2%2B12b%2B9\", we can see that the first coefficient is \"4\", the second coefficient is \"12\", and the last term is \"9\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"9\" to get \"%284%29%289%29=36\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"36\" (the previous product) and add to the second coefficient \"12\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"36\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"36\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,9,12,18,36\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-9,-12,-18,-36\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"36\".\r
\n" ); document.write( "\n" ); document.write( "1*36
\n" ); document.write( "2*18
\n" ); document.write( "3*12
\n" ); document.write( "4*9
\n" ); document.write( "6*6
\n" ); document.write( "(-1)*(-36)
\n" ); document.write( "(-2)*(-18)
\n" ); document.write( "(-3)*(-12)
\n" ); document.write( "(-4)*(-9)
\n" ); document.write( "(-6)*(-6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"12\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1361+36=37
2182+18=20
3123+12=15
494+9=13
666+6=12
-1-36-1+(-36)=-37
-2-18-2+(-18)=-20
-3-12-3+(-12)=-15
-4-9-4+(-9)=-13
-6-6-6+(-6)=-12
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"6\" and \"6\" add to \"12\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"6\" and \"6\" both multiply to \"36\" and add to \"12\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"12b\" with \"6b%2B6b\". Remember, \"6\" and \"6\" add to \"12\". So this shows us that \"6b%2B6b=12b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4b%5E2%2Bhighlight%286b%2B6b%29%2B9\" Replace the second term \"12b\" with \"6b%2B6b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284b%5E2%2B6b%29%2B%286b%2B9%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2b%282b%2B3%29%2B%286b%2B9%29\" Factor out the GCF \"2b\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2b%282b%2B3%29%2B3%282b%2B3%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282b%2B3%29%282b%2B3%29\" Combine like terms. Or factor out the common term \"2b%2B3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282b%2B3%29%5E2\" Simplify\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our expression goes from \"2%284b%5E2%2B12b%2B9%29\" and factors further to \"2%282b%2B3%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"8b%5E2%2B24b%2B18\" completely factors to \"2%282b%2B3%29%5E2\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );