document.write( "Question 167075: how do you solve this problem and what is the answer : square root of 6 over squar root of 5 - squar root of 3 \n" ); document.write( "
Algebra.Com's Answer #123116 by midwood_trail(310)\"\" \"About 
You can put this solution on YOUR website!
Let sqrt = square root\r
\n" ); document.write( "\n" ); document.write( "sqrt{6}/(sqrt{5} - sqrt{3})\r
\n" ); document.write( "\n" ); document.write( "Multiply the top and bottom by [sqrt{5} + sqrt{3}]\r
\n" ); document.write( "\n" ); document.write( "sqrt{6} times sqrt{5} + sqrt{3} = sqrt{30} + sqrt{18}...Our numerator\r
\n" ); document.write( "\n" ); document.write( "[sqrt{5} - sqrt{3}] times [sqrt{5} + sqrt{3}] = sqrt{25} - sqrt{9}...our denominator\r
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "\n" ); document.write( "We now have the following fraction:\r
\n" ); document.write( "\n" ); document.write( "[sqrt{30} + sqrt{18}]/[sqrt{25} - sqrt{9}]\r
\n" ); document.write( "\n" ); document.write( "In the denominator, we have two perfect squares.\r
\n" ); document.write( "\n" ); document.write( "So, sqrt{25} = 5 and sqrt{9} = 3\r
\n" ); document.write( "\n" ); document.write( "Then 5 - 3 = 2.\r
\n" ); document.write( "\n" ); document.write( "In the numerator, sqrt{30} is already in lowest terms and so it stays the same.
\n" ); document.write( "However, sqrt{18} becomes 3(sqrt{2}).\r
\n" ); document.write( "\n" ); document.write( "Final answer: [3(sqrt{2}) + sqrt{30}]/2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );