document.write( "Question 165604: Write the equation of a parabola that:
\n" );
document.write( "A. has x=3 as its axis of symmetry and passes through the points (2,5) & (-1,-25).
\n" );
document.write( "B. passes through the points (-3,2), (-2,8), and (1,2).\r
\n" );
document.write( "\n" );
document.write( "PLEASE show any graphical or algebraic support needed to provide the solution!!! \n" );
document.write( "
Algebra.Com's Answer #122104 by scott8148(6628)![]() ![]() You can put this solution on YOUR website! the vertex form of the parabola equation is y=a(x-h)^2+k, where (h,k) is the vertex \n" ); document.write( "__ the axis of symmetry goes through the vertex\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A. substituting __ 5=a(2-3)^2+k __ 5=a+k \n" ); document.write( "__ substituting __ -25=a(-1-3)^2+k __ -25=16a+k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "subtracting the equations __ -25-5=16a+k-a-k __ -30=15a __ -2=a\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "substituting __ 5=(-2)+k __ 7=k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y=-2(x-3)^2+7\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "B.the points (-3,2) and (1,2) have the same y value, so the axis of symmetry is midway between them __ x=-1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "substituting __ 2=a(-3+1)^2+k __ 2=4a+k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "substituting __ 8=a(-2+1)^2+k __ 8=a+k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "subtracting the equations __ 2-8=4a+k-a-k __ -6=3a __ -2=a\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "substituting __ 8=(-2)+k __ 10=k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y=-2(x+1)^2+10 \n" ); document.write( " |