document.write( "Question 164398: a[2a-4(2+a)] \n" ); document.write( "
Algebra.Com's Answer #121091 by midwood_trail(310)\"\" \"About 
You can put this solution on YOUR website!
You gave us a[2a-4(2+a)] and said it is a fraction.\r
\n" ); document.write( "\n" ); document.write( "If so, where is the fraction?\r
\n" ); document.write( "\n" ); document.write( "I think this is a case involving the distributive rule.\r
\n" ); document.write( "\n" ); document.write( "In the brackets we have:\r
\n" ); document.write( "\n" ); document.write( "2a - 4(2 + a)....We simplify this first using the distributive rule to do away with the parentheses.\r
\n" ); document.write( "\n" ); document.write( "-4 times 2 = -8\r
\n" ); document.write( "\n" ); document.write( "-4 times a = -4a\r
\n" ); document.write( "\n" ); document.write( "We now have this in the brackets:\r
\n" ); document.write( "\n" ); document.write( "[-8 - 4a]\r
\n" ); document.write( "\n" ); document.write( "We now use the distributive rule again using the letter a outside the brackets.\r
\n" ); document.write( "\n" ); document.write( "a[-8 - 4a]\r
\n" ); document.write( "\n" ); document.write( "a times -8 = -8a\r
\n" ); document.write( "\n" ); document.write( "a times -4a = -4a^2\r
\n" ); document.write( "\n" ); document.write( "This is our answer: -4a^2 - 8a\r
\n" ); document.write( "\n" ); document.write( "==============================\r
\n" ); document.write( "\n" ); document.write( "If this is not what you want, then tell me where the fraction lies in your original question.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );