document.write( "Question 160558: the sum of the digits of a two-digit number is 11. If the digit is reversed, the new number increased by 20 is twice the original number. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #118391 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! the sum of the digits of a two-digit number is 11. If the digit is reversed, the new number increased by 20 is twice the original number. Find the original number. \n" ); document.write( "------------ \n" ); document.write( "Original number: 10t+u where t is the tens digit and u is the units digit. \n" ); document.write( "------------------ \n" ); document.write( "t + u = 11 \n" ); document.write( "------------- \n" ); document.write( "Digits reversed: 10u+t \n" ); document.write( "------------- \n" ); document.write( "EQUATION: \n" ); document.write( "10u+t+20 = 2(10t+u) \n" ); document.write( "----------------------- \n" ); document.write( "Rearrange the equations: \n" ); document.write( "t + u = 11 \n" ); document.write( "19t - 8u = 20 \n" ); document.write( "--------------- \n" ); document.write( "Multiply thru 1st by 8 and add to solve for \"t\": \n" ); document.write( "8t + 8u = 88 \n" ); document.write( "19t - 8u = 20 \n" ); document.write( "------------------ \n" ); document.write( "27t = 108 \n" ); document.write( "t = 4 (the tens digit of the original number) \n" ); document.write( "Since t+u = 11, u = 7 (the units digit of the original number) \n" ); document.write( "-------------------- \n" ); document.write( "Original Number: 47 \n" ); document.write( "======================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |