document.write( "Question 160558: the sum of the digits of a two-digit number is 11. If the digit is reversed, the new number increased by 20 is twice the original number. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #118391 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
the sum of the digits of a two-digit number is 11. If the digit is reversed, the new number increased by 20 is twice the original number. Find the original number.
\n" ); document.write( "------------
\n" ); document.write( "Original number: 10t+u where t is the tens digit and u is the units digit.
\n" ); document.write( "------------------
\n" ); document.write( "t + u = 11
\n" ); document.write( "-------------
\n" ); document.write( "Digits reversed: 10u+t
\n" ); document.write( "-------------
\n" ); document.write( "EQUATION:
\n" ); document.write( "10u+t+20 = 2(10t+u)
\n" ); document.write( "-----------------------
\n" ); document.write( "Rearrange the equations:
\n" ); document.write( "t + u = 11
\n" ); document.write( "19t - 8u = 20
\n" ); document.write( "---------------
\n" ); document.write( "Multiply thru 1st by 8 and add to solve for \"t\":
\n" ); document.write( "8t + 8u = 88
\n" ); document.write( "19t - 8u = 20
\n" ); document.write( "------------------
\n" ); document.write( "27t = 108
\n" ); document.write( "t = 4 (the tens digit of the original number)
\n" ); document.write( "Since t+u = 11, u = 7 (the units digit of the original number)
\n" ); document.write( "--------------------
\n" ); document.write( "Original Number: 47
\n" ); document.write( "========================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );