document.write( "Question 159734: The time required for a citizen to complete the 2000 U.S. Census “long” form is normally distributed with a mean of 40 minutes and a standard deviation of 10 minutes. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "9. What proportion of the citizens will require less than one hour?\r
\n" ); document.write( "\n" ); document.write( "A) 0.4772
\n" ); document.write( "B) 0.9772
\n" ); document.write( "C) 0.9974
\n" ); document.write( "D) 0.9997\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "10. The slowest 10% of the citizens would need at least how many minutes to complete the form?\r
\n" ); document.write( "\n" ); document.write( "A) 27.2
\n" ); document.write( "B) 35.8
\n" ); document.write( "C) 56.4
\n" ); document.write( "D) 59.6
\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #117808 by edjones(8007)\"\" \"About 
You can put this solution on YOUR website!
9)
\n" ); document.write( "1 hr=40+20 min.
\n" ); document.write( "20=2 standard deviations
\n" ); document.write( "50%+34.1%+13.6%=97.7% B
\n" ); document.write( ".
\n" ); document.write( "10)
\n" ); document.write( "10% would be between 1 & 2 SD's on the high side so 56.4 min is about right.\r
\n" ); document.write( "\n" ); document.write( "Ed
\n" ); document.write( "
\n" );