document.write( "Question 23159: 1. Factor x8 - 256\r
\n" ); document.write( "\n" ); document.write( "2. Multiply out, collect terms and arrange in descending order
\n" ); document.write( " (2x - 3)(x + 1)(3x - 2)
\n" ); document.write( "

Algebra.Com's Answer #11675 by AnlytcPhil(1806)\"\" \"About 
You can put this solution on YOUR website!
1. Factor x8 - 256\r\n" );
document.write( "\r\n" );
document.write( "x8 - 256\r\n" );
document.write( "\r\n" );
document.write( "Write this as\r\n" );
document.write( "\r\n" );
document.write( "(x4)2 - 162\r\n" );
document.write( "\r\n" );
document.write( "This is the difference of two squares and factors as the \r\n" );
document.write( "product of the difference and sum of the square roots of the \r\n" );
document.write( "squares:\r\n" );
document.write( "\r\n" );
document.write( "(x4 - 16)(x4 + 16)\r\n" );
document.write( "\r\n" );
document.write( "Now write the first parentheses as [(x2)2 - 42].\r\n" );
document.write( "\r\n" );
document.write( "[(x2)2 - 42](x4 + 16)\r\n" );
document.write( "\r\n" );
document.write( "The bracketed expression is also the difference of two squares\r\n" );
document.write( "and factors as the product of the difference and sum of the \r\n" );
document.write( "square roots of the squares. Please note that the second factor \r\n" );
document.write( "(the one in parentheses) is the SUM or two squares, which is NOT\r\n" );
document.write( "factorable.\r\n" );
document.write( "\r\n" );
document.write( "(x2 - 4)(x2 + 4)(x4 + 16)\r\n" );
document.write( "\r\n" );
document.write( "Now write the first parenthetical factor as\r\n" );
document.write( "\r\n" );
document.write( "(x2 - 22)(x2 + 4)(x4 + 16)\r\n" );
document.write( "\r\n" );
document.write( "The first parenthetical expression is also the difference of two \r\n" );
document.write( "squares and factors as the product of the difference and sum of \r\n" );
document.write( "the square roots of the squares. Please note as before that the \r\n" );
document.write( "second and third parenthetical factors are SUM or two squares, \r\n" );
document.write( "which are not factorable.\r\n" );
document.write( "\r\n" );
document.write( "(x - 2)(x + 2)(x2 + 4)(x4 + 16)\r\n" );
document.write( "\r\n" );
document.write( "That's now completely factored.\r\n" );
document.write( "\r\n" );
document.write( "2. Multiply out, collect terms and arrange in descending order\r\n" );
document.write( "   (2x - 3)(x + 1)(3x - 2)\r\n" );
document.write( "\r\n" );
document.write( "   (2x - 3)(x + 1)(3x - 2)\r\n" );
document.write( "\r\n" );
document.write( "Multiply the first two using \"FOIL\":\r\n" );
document.write( "\r\n" );
document.write( "   (2x2 + 2x - 3x - 3)(3x - 2) \r\n" );
document.write( "\r\n" );
document.write( "Combine \" + 2x - 3x \" as \" - x \"\r\n" );
document.write( "\r\n" );
document.write( "   (2x2 - x - 3)(3x - 2)\r\n" );
document.write( "\r\n" );
document.write( "Rewrite the first factor as \r\n" );
document.write( "\r\n" );
document.write( "   [(2x2 - x) - 3](3x - 2)\r\n" );
document.write( "\r\n" );
document.write( "and use \"FOIL\" again where the entire red factor is to be considered\r\n" );
document.write( "as the \"FIRST\" on the left\r\n" );
document.write( "\r\n" );
document.write( "   (2x2 - x)(3x) - 2(2x2 - x) - 9x + 6\r\n" );
document.write( "\r\n" );
document.write( "Completing the multiplication:\r\n" );
document.write( "\r\n" );
document.write( "   6x3 - 3x2 - 4x2 + 2x - 9x + 6\r\n" );
document.write( "\r\n" );
document.write( "Combining like terms:\r\n" );
document.write( "\r\n" );
document.write( "   6x3 - 7x2 - 7x + 6 \r\n" );
document.write( "\r\n" );
document.write( "Edwin\r\n" );
document.write( "AnlytcPhil@aol.com
\n" ); document.write( "
\n" );