document.write( "Question 158061: Factor Completely\r
\n" ); document.write( "\n" ); document.write( "16x^4-40x^2+9
\n" ); document.write( "

Algebra.Com's Answer #116458 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Let \"z=x%5E2\". So this means that \"z%5E2=x%5E4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the expression goes from \"16x%5E4-40x%5E2%2B9\" to \"16z%5E2-40z%2B9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"16z%5E2-40z%2B9\", we can see that the first coefficient is \"16\", the second coefficient is \"-40\", and the last term is \"9\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"16\" by the last term \"9\" to get \"%2816%29%289%29=144\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"144\" (the previous product) and add to the second coefficient \"-40\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"144\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"144\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,9,12,16,18,24,36,48,72,144\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-9,-12,-16,-18,-24,-36,-48,-72,-144\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"144\".\r
\n" ); document.write( "\n" ); document.write( "1*144
\n" ); document.write( "2*72
\n" ); document.write( "3*48
\n" ); document.write( "4*36
\n" ); document.write( "6*24
\n" ); document.write( "8*18
\n" ); document.write( "9*16
\n" ); document.write( "12*12
\n" ); document.write( "(-1)*(-144)
\n" ); document.write( "(-2)*(-72)
\n" ); document.write( "(-3)*(-48)
\n" ); document.write( "(-4)*(-36)
\n" ); document.write( "(-6)*(-24)
\n" ); document.write( "(-8)*(-18)
\n" ); document.write( "(-9)*(-16)
\n" ); document.write( "(-12)*(-12)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-40\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11441+144=145
2722+72=74
3483+48=51
4364+36=40
6246+24=30
8188+18=26
9169+16=25
121212+12=24
-1-144-1+(-144)=-145
-2-72-2+(-72)=-74
-3-48-3+(-48)=-51
-4-36-4+(-36)=-40
-6-24-6+(-24)=-30
-8-18-8+(-18)=-26
-9-16-9+(-16)=-25
-12-12-12+(-12)=-24
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-4\" and \"-36\" add to \"-40\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-4\" and \"-36\" both multiply to \"144\" and add to \"-40\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-40z\" with \"-4z-36z\". Remember, \"-4\" and \"-36\" add to \"-40\". So this shows us that \"-4z-36z=-40z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"16z%5E2%2Bhighlight%28-4z-36z%29%2B9\" Replace the second term \"-40z\" with \"-4z-36z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2816z%5E2-4z%29%2B%28-36z%2B9%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4z%284z-1%29%2B%28-36z%2B9%29\" Factor out the GCF \"4z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4z%284z-1%29-9%284z-1%29\" Factor out \"9\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284z-9%29%284z-1%29\" Combine like terms. Or factor out the common term \"4z-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284x%5E2-9%29%284x%5E2-1%29\" Plug in \"z=x%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%2B3%29%282x-3%29%282x%2B1%29%282x-1%29\" Factor each group using the difference of squares. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: \"4x%5E2-9\" factors to \"%282x%2B3%29%282x-3%29\" and \"4x%5E2-1\" factors to \"%282x%2B1%29%282x-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"16x%5E4-40x%5E2%2B9\" completely factors to \"%282x%2B3%29%282x-3%29%282x%2B1%29%282x-1%29\".\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );