document.write( "Question 156977: How do I factor
\n" ); document.write( "16z to the 5th power + 12z to the fourth power - 10z to the third power
\n" ); document.write( "

Algebra.Com's Answer #115742 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"16z%5E5%2B12z%5E4-10z%5E3\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2z%5E3%288z%5E2%2B6z-5%29\" Factor out the GCF \"2z%5E3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"8z%5E2%2B6z-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"8z%5E2%2B6z-5\" we can see that the first term is \"8z%5E2\" and the last term is \"-5\" where the coefficients are 8 and -5 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 8 and the last coefficient -5 to get -40. Now what two numbers multiply to -40 and add to the middle coefficient 6? Let's list all of the factors of -40:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -40:\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,8,10,20,40\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-8,-10,-20,-40 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -40\r
\n" ); document.write( "\n" ); document.write( "(1)*(-40)\r
\n" ); document.write( "\n" ); document.write( "(2)*(-20)\r
\n" ); document.write( "\n" ); document.write( "(4)*(-10)\r
\n" ); document.write( "\n" ); document.write( "(5)*(-8)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(40)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(20)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(10)\r
\n" ); document.write( "\n" ); document.write( "(-5)*(8)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 6? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 6\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-401+(-40)=-39
2-202+(-20)=-18
4-104+(-10)=-6
5-85+(-8)=-3
-140-1+40=39
-220-2+20=18
-410-4+10=6
-58-5+8=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -4 and 10 add up to 6 and multiply to -40\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"8z%5E2%2B6z-5\", replace \"6z\" with \"-4z%2B10z\" (notice \"-4z%2B10z\" adds up to \"6z\". So it is equivalent to \"6z\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"8z%5E2%2Bhighlight%28-4z%2B10z%29%2B-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"8z%5E2-4z%2B10z-5\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%288z%5E2-4z%29%2B%2810z-5%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4z%282z-1%29%2B5%282z-1%29\" Factor out the GCF of \"4z\" out of the first group. Factor out the GCF of \"5\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284z%2B5%29%282z-1%29\" Since we have a common term of \"2z-1\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"8z%5E2-4z%2B10z-5\" factors to \"%284z%2B5%29%282z-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"8z%5E2%2B6z-5\" factors to \"%284z%2B5%29%282z-1%29\" (since \"8z%5E2%2B6z-5\" is equivalent to \"8z%5E2-4z%2B10z-5\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our expression goes from \"2z%5E3%288z%5E2%2B6z-5%29\" and factors further to \"2z%5E3%284z%2B5%29%282z-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"16z%5E5%2B12z%5E4-10z%5E3\" completely factors to \"2z%5E3%284z%2B5%29%282z-1%29\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );