document.write( "Question 156340: 6. How do I complete this using factoring? I appreciate the help.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "8x^2 - 22x - 21
\n" ); document.write( "

Algebra.Com's Answer #115128 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"8x%5E2-22x-21\", we can see that the first coefficient is \"8\", the second coefficient is \"-22\", and the last term is \"-21\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"8\" by the last term \"-21\" to get \"%288%29%28-21%29=-168\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-168\" (the previous product) and add to the second coefficient \"-22\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-168\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-168\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,7,8,12,14,21,24,28,42,56,84,168\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-7,-8,-12,-14,-21,-24,-28,-42,-56,-84,-168\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-168\".\r
\n" ); document.write( "\n" ); document.write( "1*(-168)
\n" ); document.write( "2*(-84)
\n" ); document.write( "3*(-56)
\n" ); document.write( "4*(-42)
\n" ); document.write( "6*(-28)
\n" ); document.write( "7*(-24)
\n" ); document.write( "8*(-21)
\n" ); document.write( "12*(-14)
\n" ); document.write( "(-1)*(168)
\n" ); document.write( "(-2)*(84)
\n" ); document.write( "(-3)*(56)
\n" ); document.write( "(-4)*(42)
\n" ); document.write( "(-6)*(28)
\n" ); document.write( "(-7)*(24)
\n" ); document.write( "(-8)*(21)
\n" ); document.write( "(-12)*(14)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-22\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-1681+(-168)=-167
2-842+(-84)=-82
3-563+(-56)=-53
4-424+(-42)=-38
6-286+(-28)=-22
7-247+(-24)=-17
8-218+(-21)=-13
12-1412+(-14)=-2
-1168-1+168=167
-284-2+84=82
-356-3+56=53
-442-4+42=38
-628-6+28=22
-724-7+24=17
-821-8+21=13
-1214-12+14=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"6\" and \"-28\" add to \"-22\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"6\" and \"-28\" both multiply to \"-168\" and add to \"-22\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-22x\" with \"6x-28x\". Remember, \"6\" and \"-28\" add to \"-22\". So this shows us that \"6x-28x=-22x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"8x%5E2%2Bhighlight%286x-28x%29-21\" Replace the second term \"-22x\" with \"6x-28x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%288x%5E2%2B6x%29%2B%28-28x-21%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%284x%2B3%29%2B%28-28x-21%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%284x%2B3%29-7%284x%2B3%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x-7%29%284x%2B3%29\" Combine like terms. Or factor out the common term \"4x%2B3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"8x%5E2-22x-21\" factors to \"%282x-7%29%284x%2B3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%282x-7%29%284x%2B3%29\" to get \"8x%5E2-22x-21\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );