document.write( "Question 155266: To simplify the expression \"+sqrt+%28x%5E2%2Ay%5E2%29+%2A+3+sqrt+%28x%5E5%2Ay%5E4%29+%2A+5+sqrt+%28x%5E5%29+\" into the form x^r*y^s we first rewrite each term in fractional powers:
\n" ); document.write( "{{ sqrt (x^2*y^2) = x^1*y^1 }},
\n" ); document.write( "{{ 3 sqrt (x^5*y^4) = x^(5/3)*y^(4/3) }}
\n" ); document.write( "and {{ 5 sqrt (x^5) = x^1 }}.
\n" ); document.write( "Combining all the powers we get
\n" ); document.write( "\"+sqrt+%28x%5E2%2Ay%5E2%29+%2A+3+sqrt+%28x%5E5%2Ay%5E4%29+%2A+5+sqrt+%28x%5E5%29+\" = x^__*y^__.
\n" ); document.write( "

Algebra.Com's Answer #114333 by checkley77(12844)\"\" \"About 
You can put this solution on YOUR website!
IF THE 3 & 5 ARE POWER ROOTS THEN:
\n" ); document.write( "(X^1Y^1)(X^5/3Y^4/3)(X^5/5)=(X^1Y^1)(X^5/3Y^4/3)(X^1)=X^11/3Y^7/3 ANSWER.
\n" ); document.write( "
\n" );