document.write( "Question 153300: factor completly:\r
\n" ); document.write( "\n" ); document.write( "36m^2-48m+16\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #112829 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\"36m%5E2-48m%2B16\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4%289m%5E2-12m%2B4%29\" Factor out the GCF \"4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"9m%5E2-12m%2B4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9m%5E2-12m%2B4\", we can see that the first coefficient is \"9\", the second coefficient is \"-12\", and the last term is \"4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"4\" to get \"%289%29%284%29=36\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"36\" (the previous product) and add to the second coefficient \"-12\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"36\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"36\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,9,12,18,36\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-9,-12,-18,-36\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"36\".\r
\n" ); document.write( "\n" ); document.write( "1*36
\n" ); document.write( "2*18
\n" ); document.write( "3*12
\n" ); document.write( "4*9
\n" ); document.write( "6*6
\n" ); document.write( "(-1)*(-36)
\n" ); document.write( "(-2)*(-18)
\n" ); document.write( "(-3)*(-12)
\n" ); document.write( "(-4)*(-9)
\n" ); document.write( "(-6)*(-6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-12\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1361+36=37
2182+18=20
3123+12=15
494+9=13
666+6=12
-1-36-1+(-36)=-37
-2-18-2+(-18)=-20
-3-12-3+(-12)=-15
-4-9-4+(-9)=-13
-6-6-6+(-6)=-12
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-6\" and \"-6\" add to \"-12\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-6\" and \"-6\" both multiply to \"36\" and add to \"-12\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-12m\" with \"-6m-6m\". Remember, \"-6\" and \"-6\" add to \"-12\". So this shows us that \"-6m-6m=-12m\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9m%5E2%2Bhighlight%28-6m-6m%29%2B4\" Replace the second term \"-12m\" with \"-6m-6m\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289m%5E2-6m%29%2B%28-6m%2B4%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3m%283m-2%29%2B%28-6m%2B4%29\" Factor out the GCF \"3m\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3m%283m-2%29-2%283m-2%29\" Factor out \"2\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283m-2%29%283m-2%29\" Combine like terms. Or factor out the common term \"3m-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283m-2%29%5E2\" Condense\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9m%5E2-12m%2B4\" factors to \"%283m-2%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means that the expression goes from \"4%289m%5E2-12m%2B4%29\" and factors further to \"4%283m-2%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"36m%5E2-48m%2B16\" factors to \"4%283m-2%29%5E2\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );