document.write( "Question 153303: Factor the expression 4n^3 + 8n^2 - 5n - 10\r
\n" ); document.write( "\n" ); document.write( "Factor k^2 + kf - 2f^2\r
\n" ); document.write( "\n" ); document.write( "Factor 6g^2 + 11g - 35\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I am not sure how to factor these. I am especially \"stuck\" on the one that uses kf.\r
\n" ); document.write( "\n" ); document.write( "Can you help? Thanks!
\n" ); document.write( "

Algebra.Com's Answer #112828 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
# 1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4n%5E3%2B8n%5E2-5n-10\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284n%5E3%2B8n%5E2%29%2B%28-5n-10%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4n%5E2%28n%2B2%29-5%28n%2B2%29\" Factor out the GCF \"4n%5E2\" out of the first group. Factor out the GCF \"-5\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284n%5E2-5%29%28n%2B2%29\" Since we have the common term \"n%2B2\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4n%5E3%2B8n%5E2-5n-10\" factors to \"%284n%5E2-5%29%28n%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"k%5E2%2Bkf-2f%5E2\" we can see that the first term is \"k%5E2\" and the last term is \"-2f%5E2\" where the coefficients are 1 and -2 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 1 and the last coefficient -2 to get -2. Now what two numbers multiply to -2 and add to the middle coefficient 1? Let's list all of the factors of -2:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -2:\r
\n" ); document.write( "\n" ); document.write( "1,2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -2\r
\n" ); document.write( "\n" ); document.write( "(1)*(-2)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 1? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-21+(-2)=-1
-12-1+2=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -1 and 2 add up to 1 and multiply to -2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"k%5E2%2Bkf-2f%5E2\", replace \"kf\" with \"-kf%2B2kf\" (notice \"-kf%2B2kf\" adds up to \"kf\". So it is equivalent to \"kf\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"k%5E2%2Bhighlight%28-kf%2B2kf%29%2B-2f%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"k%5E2-kf%2B2kf-2f%5E2\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28k%5E2-kf%29%2B%282kf-2f%5E2%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"k%28k-f%29%2B2f%28k-f%29\" Factor out the GCF of \"k\" out of the first group. Factor out the GCF of \"2f\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28k%2B2f%29%28k-f%29\" Since we have a common term of \"k-f\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"k%5E2-kf%2B2kf-2f%5E2\" factors to \"%28k%2B2f%29%28k-f%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"k%5E2%2Bkf-2f%5E2\" factors to \"%28k%2B2f%29%28k-f%29\" (since \"k%5E2%2Bkf-2f%5E2\" is equivalent to \"k%5E2-kf%2B2kf-2f%5E2\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Answer:\r
\n" ); document.write( "\n" ); document.write( "So \"k%5E2%2Bkf-2f%5E2\" factors to \"%28k%2B2f%29%28k-f%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 3\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"6g%5E2%2B11g-35\", we can see that the first coefficient is \"6\", the second coefficient is \"11\", and the last term is \"-35\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"6\" by the last term \"-35\" to get \"%286%29%28-35%29=-210\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-210\" (the previous product) and add to the second coefficient \"11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-210\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-210\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-7,-10,-14,-15,-21,-30,-35,-42,-70,-105,-210\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-210\".\r
\n" ); document.write( "\n" ); document.write( "1*(-210)
\n" ); document.write( "2*(-105)
\n" ); document.write( "3*(-70)
\n" ); document.write( "5*(-42)
\n" ); document.write( "6*(-35)
\n" ); document.write( "7*(-30)
\n" ); document.write( "10*(-21)
\n" ); document.write( "14*(-15)
\n" ); document.write( "(-1)*(210)
\n" ); document.write( "(-2)*(105)
\n" ); document.write( "(-3)*(70)
\n" ); document.write( "(-5)*(42)
\n" ); document.write( "(-6)*(35)
\n" ); document.write( "(-7)*(30)
\n" ); document.write( "(-10)*(21)
\n" ); document.write( "(-14)*(15)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-2101+(-210)=-209
2-1052+(-105)=-103
3-703+(-70)=-67
5-425+(-42)=-37
6-356+(-35)=-29
7-307+(-30)=-23
10-2110+(-21)=-11
14-1514+(-15)=-1
-1210-1+210=209
-2105-2+105=103
-370-3+70=67
-542-5+42=37
-635-6+35=29
-730-7+30=23
-1021-10+21=11
-1415-14+15=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-10\" and \"21\" add to \"11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-10\" and \"21\" both multiply to \"-210\" and add to \"11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"11g\" with \"-10g%2B21g\". Remember, \"-10\" and \"21\" add to \"11\". So this shows us that \"-10g%2B21g=11g\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6g%5E2%2Bhighlight%28-10g%2B21g%29-35\" Replace the second term \"11g\" with \"-10g%2B21g\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286g%5E2-10g%29%2B%2821g-35%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2g%283g-5%29%2B%2821g-35%29\" Factor out the GCF \"2g\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2g%283g-5%29%2B7%283g-5%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282g%2B7%29%283g-5%29\" Combine like terms. Or factor out the common term \"3g-5\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6g%5E2%2B11g-35\" factors to \"%282g%2B7%29%283g-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%282g%2B7%29%283g-5%29\" to get \"6g%5E2%2B11g-35\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );