document.write( "Question 153200: factor completly:\r
\n" ); document.write( "\n" ); document.write( "10x^3-31x+15
\n" ); document.write( "

Algebra.Com's Answer #112721 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Are you sure that the expression is not \"10x%5E2-31x%2B15\"???\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"10x%5E2-31x%2B15\", we can see that the first coefficient is \"10\", the second coefficient is \"-31\", and the last term is \"15\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"10\" by the last term \"15\" to get \"%2810%29%2815%29=150\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"150\" (the previous product) and add to the second coefficient \"-31\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"150\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"150\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,10,15,25,30,50,75,150\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-10,-15,-25,-30,-50,-75,-150\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"150\".\r
\n" ); document.write( "\n" ); document.write( "1*150
\n" ); document.write( "2*75
\n" ); document.write( "3*50
\n" ); document.write( "5*30
\n" ); document.write( "6*25
\n" ); document.write( "10*15
\n" ); document.write( "(-1)*(-150)
\n" ); document.write( "(-2)*(-75)
\n" ); document.write( "(-3)*(-50)
\n" ); document.write( "(-5)*(-30)
\n" ); document.write( "(-6)*(-25)
\n" ); document.write( "(-10)*(-15)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-31\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11501+150=151
2752+75=77
3503+50=53
5305+30=35
6256+25=31
101510+15=25
-1-150-1+(-150)=-151
-2-75-2+(-75)=-77
-3-50-3+(-50)=-53
-5-30-5+(-30)=-35
-6-25-6+(-25)=-31
-10-15-10+(-15)=-25
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-6\" and \"-25\" add to \"-31\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-6\" and \"-25\" both multiply to \"150\" and add to \"-31\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-31x\" with \"-6x-25x\". Remember, \"-6\" and \"-25\" add to \"-31\". So this shows us that \"-6x-25x=-31x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"10x%5E2%2Bhighlight%28-6x-25x%29%2B15\" Replace the second term \"-31x\" with \"-6x-25x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2810x%5E2-6x%29%2B%28-25x%2B15%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%285x-3%29%2B%28-25x%2B15%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%285x-3%29-5%285x-3%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x-5%29%285x-3%29\" Combine like terms. Or factor out the common term \"5x-3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"10x%5E2-31x%2B15\" factors to \"%282x-5%29%285x-3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%282x-5%29%285x-3%29\" to get \"10x%5E2-31x%2B15\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );