document.write( "Question 22763: Two positive numbers are in a ratio of 9 to 10. If the lesser number is decreased by 6 and the greater number is decreased by 25, the resulting ratio is 2 to 1. Find the greatest of the original numbers.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #11138 by longjonsilver(2297)![]() ![]() You can put this solution on YOUR website! Let larger number be x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have the 2 numbers in ratio 9:10, so smaller number must be 9x/10\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now change numbers:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "lefthand number reduces to (9x/10) - 6 \n" ); document.write( "righthand number reduces to x - 25\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "And now the LH number is twice the size of RH number, ie:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(9x/10) - 6 = 2(x-25) So solve this... \n" ); document.write( "(9x/10) - 6 = 2x-50 \n" ); document.write( "(9x/10) = 2x-44 \n" ); document.write( "9x = 20x-440 \n" ); document.write( "11x = 440 \n" ); document.write( "--> x = 40\r \n" ); document.write( "\n" ); document.write( "9/10ths of this is 36\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so the 2 numbers are 36 and 40.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "do the check too:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "36-6 is 30 \n" ); document.write( "40-25 is 15, half of 30.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "jon. \n" ); document.write( " \n" ); document.write( " |