document.write( "Question 151213This question is from textbook Intermediate Algebra
\n" ); document.write( ": I need help!!! I am suppose to describe a strategy for factoring a polynomial and give example showing all your steps. Can someone help me on this one. \n" ); document.write( "
Algebra.Com's Answer #111104 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Let's say that we want to factor \"4x%5E2-14x-30\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%5E2-14x-30\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%282x%5E2-7x-15%29\" Factor out the GCF \"2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"2x%5E2-7x-15\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2x%5E2-7x-15\", we can see that the first coefficient is \"2\", the second coefficient is \"-7\", and the last term is \"-15\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"-15\" to get \"%282%29%28-15%29=-30\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-30\" (the previous product) and add to the second coefficient \"-7\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-30\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-30\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,10,15,30\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-10,-15,-30\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-30\".\r
\n" ); document.write( "\n" ); document.write( "1*(-30)
\n" ); document.write( "2*(-15)
\n" ); document.write( "3*(-10)
\n" ); document.write( "5*(-6)
\n" ); document.write( "(-1)*(30)
\n" ); document.write( "(-2)*(15)
\n" ); document.write( "(-3)*(10)
\n" ); document.write( "(-5)*(6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-7\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-301+(-30)=-29
2-152+(-15)=-13
3-103+(-10)=-7
5-65+(-6)=-1
-130-1+30=29
-215-2+15=13
-310-3+10=7
-56-5+6=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"3\" and \"-10\" add to \"-7\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"3\" and \"-10\" both multiply to \"-30\" and add to \"-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-7x\" with \"3x-10x\". Remember, \"3\" and \"-10\" add to \"-7\". So this shows us that \"3x-10x=-7x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2%2Bhighlight%283x-10x%29-15\" Replace the second term \"-7x\" with \"3x-10x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%5E2%2B3x%29%2B%28-10x-15%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x%2B3%29%2B%28-10x-15%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x%2B3%29-5%282x%2B3%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-5%29%282x%2B3%29\" Combine like terms. Or factor out the common term \"2x%2B3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2%282x%5E2-7x-15%29\" factors down to \"2%28x-5%29%282x%2B3%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4x%5E2-14x-30\" factors to \"2%28x-5%29%282x%2B3%29\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );